Assessing the potential of demand-side flexibility to improve the performance of electricity systems under high variable renewable energy penetration
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.127133
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nikzad, Mehdi & Mozafari, Babak & Bashirvand, Mahdi & Solaymani, Soodabeh & Ranjbar, Ali Mohamad, 2012. "Designing time-of-use program based on stochastic security constrained unit commitment considering reliability index," Energy, Elsevier, vol. 41(1), pages 541-548.
- Olkkonen, Ville & Ekström, Jussi & Hast, Aira & Syri, Sanna, 2018. "Utilising demand response in the future Finnish energy system with increased shares of baseload nuclear power and variable renewable energy," Energy, Elsevier, vol. 164(C), pages 204-217.
- Pina, André & Silva, Carlos & Ferrão, Paulo, 2012. "The impact of demand side management strategies in the penetration of renewable electricity," Energy, Elsevier, vol. 41(1), pages 128-137.
- Dupont, B. & Dietrich, K. & De Jonghe, C. & Ramos, A. & Belmans, R., 2014. "Impact of residential demand response on power system operation: A Belgian case study," Applied Energy, Elsevier, vol. 122(C), pages 1-10.
- Roos, Aleksandra & Bolkesjø, Torjus Folsland, 2018. "Value of demand flexibility on spot and reserve electricity markets in future power system with increased shares of variable renewable energy," Energy, Elsevier, vol. 144(C), pages 207-217.
- Anjo, João & Neves, Diana & Silva, Carlos & Shivakumar, Abhishek & Howells, Mark, 2018. "Modeling the long-term impact of demand response in energy planning: The Portuguese electric system case study," Energy, Elsevier, vol. 165(PA), pages 456-468.
- Saffari, Mohammadali & McPherson, Madeleine, 2022. "Assessment of Canada's electricity system potential for variable renewable energy integration," Energy, Elsevier, vol. 250(C).
- McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
- Kirkerud, J.G. & Nagel, N.O. & Bolkesjø, T.F., 2021. "The role of demand response in the future renewable northern European energy system," Energy, Elsevier, vol. 235(C).
- Mansourshoar, Paria & Yazdankhah, Ahmad Sadeghi & Vatanpour, Mohsen & Mohammadi-Ivatloo, Behnam, 2022. "Impact of implementing a price-based demand response program on the system reliability in security-constrained unit commitment problem coupled with wind farms in the presence of contingencies," Energy, Elsevier, vol. 255(C).
- Arjmand, Reza & McPherson, Madeleine, 2022. "Canada's electricity system transition under alternative policy scenarios," Energy Policy, Elsevier, vol. 163(C).
- Falsafi, Hananeh & Zakariazadeh, Alireza & Jadid, Shahram, 2014. "The role of demand response in single and multi-objective wind-thermal generation scheduling: A stochastic programming," Energy, Elsevier, vol. 64(C), pages 853-867.
- Miri, Mohammad & Saffari, Mohammadali & Arjmand, Reza & McPherson, Madeleine, 2022. "Integrated models in action: Analyzing flexibility in the Canadian power system toward a zero-emission future," Energy, Elsevier, vol. 261(PA).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kat, B. & Şahin, Ü. & Teimourzadeh, S. & Tör, O.B. & Voyvoda, E. & Yeldan, A.E., 2024. "A new energy-economy-environment modeling framework: Insights from decarbonization of the Turkish power Sector towards net-zero Emission targets," Energy, Elsevier, vol. 302(C).
- Shahryar Jafarinejad & Rebecca R. Hernandez & Sajjad Bigham & Bryan S. Beckingham, 2023. "The Intertwined Renewable Energy–Water–Environment (REWE) Nexus Challenges and Opportunities: A Case Study of California," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chiara Magni & Alessia Arteconi & Konstantinos Kavvadias & Sylvain Quoilin, 2020. "Modelling the Integration of Residential Heat Demand and Demand Response in Power Systems with High Shares of Renewables," Energies, MDPI, vol. 13(24), pages 1-19, December.
- Máximo A. Domínguez-Garabitos & Víctor S. Ocaña-Guevara & Félix Santos-García & Adriana Arango-Manrique & Miguel Aybar-Mejía, 2022. "A Methodological Proposal for Implementing Demand-Shifting Strategies in the Wholesale Electricity Market," Energies, MDPI, vol. 15(4), pages 1-28, February.
- Khanna, Tarun M., 2022. "Using agricultural demand for reducing costs of renewable energy integration in India," Energy, Elsevier, vol. 254(PC).
- Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "Integrating supply and demand-side management in renewable-based energy systems," Energy, Elsevier, vol. 232(C).
- Bing Wang & Qiran Cai & Zhenming Sun, 2020. "Determinants of Willingness to Participate in Urban Incentive-Based Energy Demand-Side Response: An Empirical Micro-Data Analysis," Sustainability, MDPI, vol. 12(19), pages 1-18, September.
- Seatle, Madeleine & McPherson, Madeleine, 2024. "Residential demand response program modelling to compliment grid composition and changes in energy efficiency," Energy, Elsevier, vol. 290(C).
- Balasubramanian, S. & Balachandra, P., 2021. "Effectiveness of demand response in achieving supply-demand matching in a renewables dominated electricity system: A modelling approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
- Arjmand, Reza & Monroe, Jacob & McPherson, Madeleine, 2023. "The role of emerging technologies in Canada's electricity system transition," Energy, Elsevier, vol. 278(PA).
- Bert Willems & Juulia Zhou, 2020. "The Clean Energy Package and Demand Response: Setting Correct Incentives," Energies, MDPI, vol. 13(21), pages 1-19, October.
- Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Nilsson, Anders & Bartusch, Cajsa, 2024. "Empowered or enchained? Exploring consumer perspectives on Direct Load Control," Energy Policy, Elsevier, vol. 192(C).
- Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
- Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
- Sasaki, Kento & Aki, Hirohisa & Ikegami, Takashi, 2022. "Application of model predictive control to grid flexibility provision by distributed energy resources in residential dwellings under uncertainty," Energy, Elsevier, vol. 239(PB).
- Kirkerud, J.G. & Nagel, N.O. & Bolkesjø, T.F., 2021. "The role of demand response in the future renewable northern European energy system," Energy, Elsevier, vol. 235(C).
- Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
- Zhang, Menglin & Ai, Xiaomeng & Fang, Jiakun & Yao, Wei & Zuo, Wenping & Chen, Zhe & Wen, Jinyu, 2018. "A systematic approach for the joint dispatch of energy and reserve incorporating demand response," Applied Energy, Elsevier, vol. 230(C), pages 1279-1291.
- Ferreira, Paula & Rocha, Ana & Araujo, Madalena & Afonso, Joao L. & Antunes, Carlos Henggeler & Lopes, Marta A.R. & Osório, Gerardo J. & Catalão, João P.S. & Lopes, João Peças, 2023. "Assessing the societal impact of smart grids: Outcomes of a collaborative research project," Technology in Society, Elsevier, vol. 72(C).
- Jiacheng Liu & Shan Huang & Qiang Shuai & Tingyun Gu & Houyi Zhang, 2024. "Sustainable Development Strategies in Power Systems: Day-Ahead Stochastic Scheduling with Multi-Sources and Customer Directrix Load Demand Response," Sustainability, MDPI, vol. 16(6), pages 1-21, March.
More about this item
Keywords
Electricity system operation model (SILVER); Capacity expansion model (COPPER); Time-of-use (ToU); Price-sensitive load (PSL); VRE integration; Unit commitment;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:272:y:2023:i:c:s0360544223005273. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.