IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v207y2020ics0360544220313724.html
   My bibliography  Save this article

A novel ensemble method for residential electricity demand forecasting based on a novel sample simulation strategy

Author

Listed:
  • Zhang, Guoqiang
  • Guo, Jifeng

Abstract

This paper presents a novel ensemble method of forecasting the residential electricity demand. Firstly, the time-series of the original input variables is filtered by unscented kalman filter (UKF), and then the incremental percentages of current and previous sample points are taken as new input features of the proposed method. Secondly, an improved coupled generative adversarial stacked auto-encoder (ICoGASA) consisting of three generative adversarial networks (GAN) is developed to generate more similar errors in weather forecast and lifestyles of different residents, with less noise. All of the three GANs are composed of two deep belief networks (DBNs), which serve as generator and discriminator, respectively. The three generators of GANs are used to simulate the samples with positive error, negative error and mixed error, respectively. Then the output of the three discriminators is integrated by memristor array (MA), and the integrated output of each ICoGASA are integrated by self-organizing map (SOM). Thirdly, the input weights of SOM are optimized by MA and a new weight updated strategy (WUS). Compared with other state-of-the-art ensemble methods, the scopes of the root mean square error (RMSE) are reduced by [8.295, 16.221] %, [15.507, 28.066] %, [20.494, 36.969] %, respectively.

Suggested Citation

  • Zhang, Guoqiang & Guo, Jifeng, 2020. "A novel ensemble method for residential electricity demand forecasting based on a novel sample simulation strategy," Energy, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313724
    DOI: 10.1016/j.energy.2020.118265
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220313724
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118265?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Song & Goel, Lalit & Wang, Peng, 2016. "An ensemble approach for short-term load forecasting by extreme learning machine," Applied Energy, Elsevier, vol. 170(C), pages 22-29.
    2. Xing, Yazhou & Zhang, Su & Wen, Peng & Shao, Limin & Rouyendegh, Babak Daneshvar, 2020. "Load prediction in short-term implementing the multivariate quantile regression," Energy, Elsevier, vol. 196(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yunfei & Zhou, Zhihua & Liu, Junwei & Yuan, Jianjuan, 2022. "Data augmentation for improving heating load prediction of heating substation based on TimeGAN," Energy, Elsevier, vol. 260(C).
    2. Imani, Maryam, 2021. "Electrical load-temperature CNN for residential load forecasting," Energy, Elsevier, vol. 227(C).
    3. Zheyu He & Rongheng Lin & Budan Wu & Xin Zhao & Hua Zou, 2023. "Pre-Attention Mechanism and Convolutional Neural Network Based Multivariate Load Prediction for Demand Response," Energies, MDPI, vol. 16(8), pages 1-13, April.
    4. Mansour, Shaza H. & Azzam, Sarah M. & Hasanien, Hany M. & Tostado-Veliz, Marcos & Alkuhayli, Abdulaziz & Jurado, Francisco, 2024. "Wasserstein generative adversarial networks-based photovoltaic uncertainty in a smart home energy management system including battery storage devices," Energy, Elsevier, vol. 306(C).
    5. Luo, Zheng & Lin, Xiaojie & Qiu, Tianyue & Li, Manjie & Zhong, Wei & Zhu, Lingkai & Liu, Shuangcui, 2024. "Investigation of hybrid adversarial-diffusion sample generation method of substations in district heating system," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. V. Y. Kondaiah & B. Saravanan, 2022. "Short-Term Load Forecasting with a Novel Wavelet-Based Ensemble Method," Energies, MDPI, vol. 15(14), pages 1-17, July.
    2. Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
    3. Rendon-Sanchez, Juan F. & de Menezes, Lilian M., 2019. "Structural combination of seasonal exponential smoothing forecasts applied to load forecasting," European Journal of Operational Research, Elsevier, vol. 275(3), pages 916-924.
    4. Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
    5. He, Yan & Zhang, Hongli & Dong, Yingchao & Wang, Cong & Ma, Ping, 2024. "Residential net load interval prediction based on stacking ensemble learning," Energy, Elsevier, vol. 296(C).
    6. Cocco Mariani, Viviana & Hennings Och, Stephan & dos Santos Coelho, Leandro & Domingues, Eric, 2019. "Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models," Applied Energy, Elsevier, vol. 249(C), pages 204-221.
    7. Sun, Wei & Zhang, Chongchong, 2018. "Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm," Applied Energy, Elsevier, vol. 231(C), pages 1354-1371.
    8. Xing Zhang & Zhuoqun Wei, 2019. "A Hybrid Model Based on Principal Component Analysis, Wavelet Transform, and Extreme Learning Machine Optimized by Bat Algorithm for Daily Solar Radiation Forecasting," Sustainability, MDPI, vol. 11(15), pages 1-20, July.
    9. Sepasi, Saeed & Reihani, Ehsan & Howlader, Abdul M. & Roose, Leon R. & Matsuura, Marc M., 2017. "Very short term load forecasting of a distribution system with high PV penetration," Renewable Energy, Elsevier, vol. 106(C), pages 142-148.
    10. He, Feifei & Zhou, Jianzhong & Mo, Li & Feng, Kuaile & Liu, Guangbiao & He, Zhongzheng, 2020. "Day-ahead short-term load probability density forecasting method with a decomposition-based quantile regression forest," Applied Energy, Elsevier, vol. 262(C).
    11. Zhineng Hu & Jing Ma & Liangwei Yang & Liming Yao & Meng Pang, 2019. "Monthly electricity demand forecasting using empirical mode decomposition-based state space model," Energy & Environment, , vol. 30(7), pages 1236-1254, November.
    12. Xueliang Li & Bingkang Li & Long Zhao & Huiru Zhao & Wanlei Xue & Sen Guo, 2019. "Forecasting the Short-Term Electric Load Considering the Influence of Air Pollution Prevention and Control Policy via a Hybrid Model," Sustainability, MDPI, vol. 11(10), pages 1-21, May.
    13. Federico Divina & Aude Gilson & Francisco Goméz-Vela & Miguel García Torres & José F. Torres, 2018. "Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting," Energies, MDPI, vol. 11(4), pages 1-31, April.
    14. Talaat, M. & Farahat, M.A. & Mansour, Noura & Hatata, A.Y., 2020. "Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach," Energy, Elsevier, vol. 196(C).
    15. Sen Wang & Yonghui Sun & Yan Zhou & Rabea Jamil Mahfoud & Dongchen Hou, 2019. "A New Hybrid Short-Term Interval Forecasting of PV Output Power Based on EEMD-SE-RVM," Energies, MDPI, vol. 13(1), pages 1-17, December.
    16. Shan, Rui & Sasthav, Colin & Wang, Xianxun & Lima, Luana M.M., 2020. "Complementary relationship between small-hydropower and increasing penetration of solar photovoltaics: Evidence from CAISO," Renewable Energy, Elsevier, vol. 155(C), pages 1139-1146.
    17. Hu, Yi & Qu, Boyang & Wang, Jie & Liang, Jing & Wang, Yanli & Yu, Kunjie & Li, Yaxin & Qiao, Kangjia, 2021. "Short-term load forecasting using multimodal evolutionary algorithm and random vector functional link network based ensemble learning," Applied Energy, Elsevier, vol. 285(C).
    18. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2021. "Point and interval forecasting of electricity supply via pruned ensembles," Energy, Elsevier, vol. 232(C).
    19. Chan-Uk Yeom & Keun-Chang Kwak, 2017. "Short-Term Electricity-Load Forecasting Using a TSK-Based Extreme Learning Machine with Knowledge Representation," Energies, MDPI, vol. 10(10), pages 1-18, October.
    20. Wenhui Zhao & Tong Li & Danyang Xu & Zhaohua Wang, 2024. "A global forecasting method of heterogeneous household short-term load based on pre-trained autoencoder and deep-LSTM model," Annals of Operations Research, Springer, vol. 339(1), pages 227-259, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.