IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v206y2020ics0360544220311671.html
   My bibliography  Save this article

Scenarios for geothermal energy deployment in Europe

Author

Listed:
  • Dalla Longa, Francesco
  • Nogueira, Larissa P.
  • Limberger, Jon
  • Wees, Jan-Diederik van
  • van der Zwaan, Bob

Abstract

The use of geothermal energy in Europe is expected to grow rapidly over the next decades, since this energy resource is generally abundant, ubiquitous, versatile, low-carbon, and non-intermittent. We have expanded and adapted the integrated assessment model TIAM-ECN to more adequately reflect geothermal energy potentials and to better represent the various sectors in which geothermal energy could possibly be used. With the updated version of TIAM-ECN, we quantify how large the share of geothermal energy in Europe could grow until 2050, and analyze how this expansion could be stimulated by climate policy and technological progress. We investigate geothermal energy’s two main applications: power and heat production. For the former, we project an increase to around 100–210 TWh/yr in 2050, depending on assumptions regarding climate ambition and cost reductions for enhanced geothermal resource systems. For the latter, with applications in residential, commercial, industrial, and agricultural sectors, we anticipate under the same assumptions a rise to about 880–1050 TWh/yr in 2050. We estimate that by the middle of the century geothermal energy plants could contribute approximately 4–7% to European electricity generation. We foresee a European geothermal energy investment market (supply plus demand side) possibly worth about 160–210 billion US$/yr by mid-century.

Suggested Citation

  • Dalla Longa, Francesco & Nogueira, Larissa P. & Limberger, Jon & Wees, Jan-Diederik van & van der Zwaan, Bob, 2020. "Scenarios for geothermal energy deployment in Europe," Energy, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220311671
    DOI: 10.1016/j.energy.2020.118060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220311671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Trumpy, E. & Botteghi, S. & Caiozzi, F. & Donato, A. & Gola, G. & Montanari, D. & Pluymaekers, M.P.D. & Santilano, A. & van Wees, J.D. & Manzella, A., 2016. "Geothermal potential assessment for a low carbon strategy: A new systematic approach applied in southern Italy," Energy, Elsevier, vol. 103(C), pages 167-181.
    2. van der Zwaan, Bob & Kober, Tom & Longa, Francesco Dalla & van der Laan, Anouk & Jan Kramer, Gert, 2018. "An integrated assessment of pathways for low-carbon development in Africa," Energy Policy, Elsevier, vol. 117(C), pages 387-395.
    3. Kober, Tom & Falzon, James & van der Zwaan, Bob & Calvin, Katherine & Kanudia, Amit & Kitous, Alban & Labriet, Maryse, 2016. "A multi-model study of energy supply investments in Latin America under climate control policy," Energy Economics, Elsevier, vol. 56(C), pages 543-551.
    4. Fukui, Rokuhei & Greenfield, Carl & Pogue, Katie & van der Zwaan, Bob, 2017. "Experience curve for natural gas production by hydraulic fracturing," Energy Policy, Elsevier, vol. 105(C), pages 263-268.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van der Zwaan, Bob & Lamboo, Sam & Dalla Longa, Francesco, 2021. "Timmermans’ dream: An electricity and hydrogen partnership between Europe and North Africa," Energy Policy, Elsevier, vol. 159(C).
    2. Qian, Yuan & Scherer, Laura & Tukker, Arnold & Behrens, Paul, 2020. "China's potential SO2 emissions from coal by 2050," Energy Policy, Elsevier, vol. 147(C).
    3. Li, Wei & Lu, Can & Zhang, Yan-Wu, 2019. "Prospective exploration of future renewable portfolio standard schemes in China via a multi-sector CGE model," Energy Policy, Elsevier, vol. 128(C), pages 45-56.
    4. Francesca Ceglia & Adriano Macaluso & Elisa Marrasso & Carlo Roselli & Laura Vanoli, 2020. "Energy, Environmental, and Economic Analyses of Geothermal Polygeneration System Using Dynamic Simulations," Energies, MDPI, vol. 13(18), pages 1-34, September.
    5. Martina Gizzi & Federico Vagnon & Glenda Taddia & Stefano Lo Russo, 2023. "A Review of Groundwater Heat Pump Systems in the Italian Framework: Technological Potential and Environmental Limits," Energies, MDPI, vol. 16(12), pages 1-13, June.
    6. Trotter, Philipp A., 2022. "The slow transition to solar, wind and other non-hydro renewables in Africa – Responding to and building on a critique by Kincer, Moss and Thurber (2021)," World Development Perspectives, Elsevier, vol. 25(C).
    7. Dalla Longa, Francesco & van der Zwaan, Bob, 2021. "Heart of light: an assessment of enhanced electricity access in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    8. Henrique Oliveira & Víctor Moutinho, 2021. "Renewable Energy, Economic Growth and Economic Development Nexus: A Bibliometric Analysis," Energies, MDPI, vol. 14(15), pages 1-28, July.
    9. Daniilidis, Alexandros & Herber, Rien, 2017. "Salt intrusions providing a new geothermal exploration target for higher energy recovery at shallower depths," Energy, Elsevier, vol. 118(C), pages 658-670.
    10. Jong-Hyun Kim & Yong-Gil Lee, 2018. "Learning Curve, Change in Industrial Environment, and Dynamics of Production Activities in Unconventional Energy Resources," Sustainability, MDPI, vol. 10(9), pages 1-11, September.
    11. Amoah, Anthony & Ferrini, Silvia & Schaafsma, Marije, 2019. "Electricity outages in Ghana: Are contingent valuation estimates valid?," Energy Policy, Elsevier, vol. 135(C).
    12. Palmer-Wilson, K. & Banks, J. & Walsh, W. & Robertson, B., 2018. "Sedimentary basin geothermal favourability mapping and power generation assessments," Renewable Energy, Elsevier, vol. 127(C), pages 1087-1100.
    13. R.V., Rohit & R., Vipin Raj & Kiplangat, Dennis C. & R., Veena & Jose, Rajan & Pradeepkumar, A.P. & Kumar, K. Satheesh, 2023. "Tracing the evolution and charting the future of geothermal energy research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    14. Yang, Lin & Lv, Haodong & Wei, Ning & Li, Yiming & Zhang, Xian, 2023. "Dynamic optimization of carbon capture technology deployment targeting carbon neutrality, cost efficiency and water stress: Evidence from China's electric power sector," Energy Economics, Elsevier, vol. 125(C).
    15. Olaofe, Z.O., 2018. "Review of energy systems deployment and development of offshore wind energy resource map at the coastal regions of Africa," Energy, Elsevier, vol. 161(C), pages 1096-1114.
    16. Nyambuu, Unurjargal & Semmler, Willi, 2020. "Climate change and the transition to a low carbon economy – Carbon targets and the carbon budget," Economic Modelling, Elsevier, vol. 84(C), pages 367-376.
    17. Girma T. Chala & Abd Rashid Abd Aziz & Ftwi Y. Hagos, 2018. "Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue," Energies, MDPI, vol. 11(11), pages 1-44, October.
    18. Goldemberg, José, 2020. "The evolution of the energy and carbon intensities of developing countries," Energy Policy, Elsevier, vol. 137(C).
    19. Gondia Sokhna Seck & Emmanuel Hache & Clement Bonnet & Marine Simoën & Samuel Carcanague, 2020. "Copper at the crossroads : Assessment of the interactions between low-carbon energy transition and supply limitations," Post-Print hal-03118509, HAL.
    20. Langer, Jannis & Quist, Jaco & Blok, Kornelis, 2020. "Recent progress in the economics of ocean thermal energy conversion: Critical review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220311671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.