IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v137y2020ics0301421519306470.html
   My bibliography  Save this article

The evolution of the energy and carbon intensities of developing countries

Author

Listed:
  • Goldemberg, José

Abstract

The evolution of the energy intensity (TPES/GDP) and the carbon intensity (CO2/GDP) was investigated in the period 1990–2014. The universal tendency is a steady decline for all groups of countries (low, lower middle, upper middle and high income) with very few exceptions. Economic development as measured by GDP has been “decoupled” from total primary energy supply (TPES) and CO2 emissions in all regions of the world. The main drivers for such decline are discussed particularly the role of technological “leapfrogging”. Carbon emissions are growing faster than total primary energy supply (TPES) in the world as a whole and in the lower and upper income group of countries but declined in the high and low income groups. The early adoption of adequate policies determines the amount of decoupling, energy efficiency and the increased use of renewable being the dominant options. There are examples of countries which developed without increasing CO2 emissions and there is no reason to believe it could not be done in many developing countries.

Suggested Citation

  • Goldemberg, José, 2020. "The evolution of the energy and carbon intensities of developing countries," Energy Policy, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:enepol:v:137:y:2020:i:c:s0301421519306470
    DOI: 10.1016/j.enpol.2019.111060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519306470
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.111060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Zwaan, Bob & Kober, Tom & Longa, Francesco Dalla & van der Laan, Anouk & Jan Kramer, Gert, 2018. "An integrated assessment of pathways for low-carbon development in Africa," Energy Policy, Elsevier, vol. 117(C), pages 387-395.
    2. Teklu, Tadesse Weldu, 2018. "Should Ethiopia and least developed countries exit from the Paris climate accord? – Geopolitical, development, and energy policy perspectives," Energy Policy, Elsevier, vol. 120(C), pages 402-417.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Huwei & Li, Nuoyan & Lee, Chien-Chiang, 2021. "Energy intensity of manufacturing enterprises under competitive pressure from the informal sector: Evidence from developing and emerging countries," Energy Economics, Elsevier, vol. 104(C).
    2. Jiaojiao Yang & Ting Wang & Yujie Hu & Qiyun Deng & Shu Mo, 2023. "Comparative Analysis of Research Trends and Hotspots of Foreign and Chinese Building Carbon Emissions Based on Bibliometrics," Sustainability, MDPI, vol. 15(13), pages 1-24, June.
    3. Inhwan Ko & Taedong Lee, 2022. "Carbon pricing and decoupling between greenhouse gas emissions and economic growth: A panel study of 29 European countries, 1996–2014," Review of Policy Research, Policy Studies Organization, vol. 39(5), pages 654-673, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van der Zwaan, Bob & Lamboo, Sam & Dalla Longa, Francesco, 2021. "Timmermans’ dream: An electricity and hydrogen partnership between Europe and North Africa," Energy Policy, Elsevier, vol. 159(C).
    2. Dioha, Michael O. & Kumar, Atul, 2020. "Exploring the energy system impacts of Nigeria's Nationally Determined Contributions and low-carbon transition to mid-century," Energy Policy, Elsevier, vol. 144(C).
    3. Li, Wei & Lu, Can & Zhang, Yan-Wu, 2019. "Prospective exploration of future renewable portfolio standard schemes in China via a multi-sector CGE model," Energy Policy, Elsevier, vol. 128(C), pages 45-56.
    4. Trotter, Philipp A., 2022. "The slow transition to solar, wind and other non-hydro renewables in Africa – Responding to and building on a critique by Kincer, Moss and Thurber (2021)," World Development Perspectives, Elsevier, vol. 25(C).
    5. Odhiambo Alphonce Kasera & Owilli Mathews Odhiambo & Bruno Charles Oloo, 2024. "Africa in Global Public Policy: Theoretical Perspectives and the Role of International Law in Shaping Public Policy in Africa," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(6), pages 910-937, June.
    6. Dalla Longa, Francesco & van der Zwaan, Bob, 2021. "Heart of light: an assessment of enhanced electricity access in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    7. Henrique Oliveira & Víctor Moutinho, 2021. "Renewable Energy, Economic Growth and Economic Development Nexus: A Bibliometric Analysis," Energies, MDPI, vol. 14(15), pages 1-28, July.
    8. Amoah, Anthony & Ferrini, Silvia & Schaafsma, Marije, 2019. "Electricity outages in Ghana: Are contingent valuation estimates valid?," Energy Policy, Elsevier, vol. 135(C).
    9. Musonye, Xavier S. & Davíðsdóttir, Brynhildur & Kristjánsson, Ragnar & Ásgeirsson, Eyjólfur I. & Stefánsson, Hlynur, 2020. "Integrated energy systems’ modeling studies for sub-Saharan Africa: A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    10. Keywan Riahi & Christoph Bertram & Daniel Huppmann & Joeri Rogelj & Valentina Bosetti & Anique-Marie Cabardos & Andre Deppermann & Laurent Drouet & Stefan Frank & Oliver Fricko & Shinichiro Fujimori &, 2021. "Cost and attainability of meeting stringent climate targets without overshoot," Nature Climate Change, Nature, vol. 11(12), pages 1063-1069, December.
    11. repec:lib:000cis:v:7:y:2019:i:1:p:30-39 is not listed on IDEAS
    12. Dalla Longa, Francesco & Nogueira, Larissa P. & Limberger, Jon & Wees, Jan-Diederik van & van der Zwaan, Bob, 2020. "Scenarios for geothermal energy deployment in Europe," Energy, Elsevier, vol. 206(C).
    13. Sweerts, Bart & Longa, Francesco Dalla & van der Zwaan, Bob, 2019. "Financial de-risking to unlock Africa's renewable energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 75-82.
    14. Olaofe, Z.O., 2018. "Review of energy systems deployment and development of offshore wind energy resource map at the coastal regions of Africa," Energy, Elsevier, vol. 161(C), pages 1096-1114.
    15. Gondia Sokhna Seck & Emmanuel Hache & Clement Bonnet & Marine Simoën & Samuel Carcanague, 2020. "Copper at the crossroads : Assessment of the interactions between low-carbon energy transition and supply limitations," Post-Print hal-03118509, HAL.
    16. Zeng Li & Jingying Fu & Gang Lin & Dong Jiang & Kun Liu & Yaxin Wang, 2019. "Multi-Scenario Analysis of Energy Consumption and Carbon Emissions: The Case of Hebei Province in China," Energies, MDPI, vol. 12(4), pages 1-17, February.
    17. Apfel, Dorothee & Haag, Steffen & Herbes, Carsten, 2021. "Research agendas on renewable energies in the Global South: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Wang, Jieyu & Shan, Yuli & Cui, Can & Zhao, Congyu & Meng, Jing & Wang, Shaojian, 2024. "Investigating the fast energy-related carbon emissions growth in African countries and its drivers," Applied Energy, Elsevier, vol. 357(C).
    19. Mahumane, Gilberto & Mulder, Peter, 2019. "Expanding versus greening? Long-term energy and emission transitions in Mozambique," Energy Policy, Elsevier, vol. 126(C), pages 145-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:137:y:2020:i:c:s0301421519306470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.