IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v182y2019icp656-672.html
   My bibliography  Save this article

A numerical investigation of the performance of Polymer Electrolyte Membrane fuel cell with the converging-diverging flow field using two-phase flow modeling

Author

Listed:
  • Havaej, P.

Abstract

In this study, two-phase flow in a Polymer Electrolyte Membrane (PEM) fuel cell with the converging-diverging flow field was investigated using numerical simulation. A transient, three-dimensional, two-phase flow, and multi-component model, as well as an agglomerate model for oxygen reduction in the cathode catalyst layer, was employed to simulate the performance of the cathode half-cell. The numerical implementation was conducted by developing a new solver in OpenFOAM by the author. An augmentation about 28.2% was observed in the oxygen mass fraction at GDL/Channel interface for a PEM fuel cell with a converging-diverging angle of 0.3° in comparison with the reference cell (straight channels). Moreover, the average of liquid water saturation was decreased by 3.61% in the middle cross-section of gas channels and 9.4% near to the outlet region for reviewed converging-diverging cases. Finally, to investigate the improvement of the cell performance, polarization curve and net output power were presented. It was found that the using converging-diverging flow field was more effective at high current densities, while it had a minor effect at low current densities. The net output power of the PEM fuel cell with converging-diverging channels was enhanced by more than 10% compared with the base cell.

Suggested Citation

  • Havaej, P., 2019. "A numerical investigation of the performance of Polymer Electrolyte Membrane fuel cell with the converging-diverging flow field using two-phase flow modeling," Energy, Elsevier, vol. 182(C), pages 656-672.
  • Handle: RePEc:eee:energy:v:182:y:2019:i:c:p:656-672
    DOI: 10.1016/j.energy.2019.06.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219312216
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rostami, Leila & Haghshenasfard, Masoud & Sadeghi, Morteza & Zhiani, Mohammad, 2022. "A 3D CFD model of novel flow channel designs based on the serpentine and the parallel design for performance enhancement of PEMFC," Energy, Elsevier, vol. 258(C).
    2. Qiao, Jia Nan & Guo, Hang & Ye, Fang & Chen, Hao, 2024. "A nonlinear contraction channel design inspired by typical mathematical curves: Boosting net power and water discharge of PEM fuel cells," Applied Energy, Elsevier, vol. 357(C).
    3. Pan, Mingzhang & Li, Chao & Liao, Jinyang & Lei, Han & Pan, Chengjie & Meng, Xianpan & Huang, Haozhong, 2020. "Design and modeling of PEM fuel cell based on different flow fields," Energy, Elsevier, vol. 207(C).
    4. Xiong, Kangning & Wu, Wei & Wang, Shuangfeng & Zhang, Lin, 2021. "Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review," Applied Energy, Elsevier, vol. 301(C).
    5. Dong, Pengcheng & Xie, Gongnan & Ni, Meng, 2020. "The mass transfer characteristics and energy improvement with various partially blocked flow channels in a PEM fuel cell," Energy, Elsevier, vol. 206(C).
    6. Zheng, Guoxu & Wang, Dongxing & Tian, Shiyi & Ren, Mingyuan & Song, Mingxin, 2021. "Effect of microstructure and contact interfaces of cobalt MOFs-derived carbon matrix composite electrode materials on lithium storage performance," Energy, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:182:y:2019:i:c:p:656-672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.