IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v205y2020ics036054422031104x.html
   My bibliography  Save this article

Characterizing anisotropy changes in the permeability of hydrate sediment

Author

Listed:
  • Wang, Jiaqi
  • Zhang, Lunxiang
  • Ge, Kun
  • Zhao, Jiafei
  • Song, Yongcheng

Abstract

Natural gas hydrate is recognized as an ideal substitute for traditional energy resources. Gas production from hydrate reservoirs is accompanied by the phase transition of solid hydrate, which inevitably results in changes to the microstructure of hydrate sediments. Therefore, the interaction mechanism between the microstructure and permeation characteristics of hydrate sediments must be investigated, especially permeability anisotropy. In this study, we assess the variations in permeability anisotropy during krypton hydrate formation using a pore network model and X-ray computed tomography. The results showed that absolute permeability in the vertical (kv) and horizontal (kh) directions both decreased throughout the formation process, but that the decline in kv was steeper, thus resulting in a sharp increase in the degree of permeability anisotropy (kh/kv). The relative permeability to gas was always higher in the horizontal direction than of that in the vertical direction, whereas the relative permeability to water was the opposite. Moreover, the difference in the relative permeability to water and gas between the two directions increased with the increasing hydrate saturation (Sh). When extrapolating to the field-scale for hydrate field trials, we consider that horizontal wells provide a better option for gas production, especially for hydrate reservoirs with a higher hydrate saturation.

Suggested Citation

  • Wang, Jiaqi & Zhang, Lunxiang & Ge, Kun & Zhao, Jiafei & Song, Yongcheng, 2020. "Characterizing anisotropy changes in the permeability of hydrate sediment," Energy, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:energy:v:205:y:2020:i:c:s036054422031104x
    DOI: 10.1016/j.energy.2020.117997
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422031104X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117997?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Yongchen & Cheng, Chuanxiao & Zhao, Jiafei & Zhu, Zihao & Liu, Weiguo & Yang, Mingjun & Xue, Kaihua, 2015. "Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods," Applied Energy, Elsevier, vol. 145(C), pages 265-277.
    2. Yang, Lei & Ai, Li & Xue, Kaihua & Ling, Zheng & Li, Yanghui, 2018. "Analyzing the effects of inhomogeneity on the permeability of porous media containing methane hydrates through pore network models combined with CT observation," Energy, Elsevier, vol. 163(C), pages 27-37.
    3. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    4. W. T. Wood & J. F. Gettrust & N. R. Chapman & G. D. Spence & R. D. Hyndman, 2002. "Decreased stability of methane hydrates in marine sediments owing to phase-boundary roughness," Nature, Nature, vol. 420(6916), pages 656-660, December.
    5. Zhao, Jiafei & Zhu, Zihao & Song, Yongchen & Liu, Weiguo & Zhang, Yi & Wang, Dayong, 2015. "Analyzing the process of gas production for natural gas hydrate using depressurization," Applied Energy, Elsevier, vol. 142(C), pages 125-134.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ruirui & Zhang, Luqing & Zhou, Jian & Han, Zhenhua & Pan, Zhejun & Schüttrumpf, Holger, 2023. "Investigation on permeability anisotropy in unconsolidated hydrate-bearing sediments based on pore-scale numerical simulation: Effect of mineral particle shape and pore-filling," Energy, Elsevier, vol. 267(C).
    2. Jianchun Xu & Ziwei Bu & Hangyu Li & Xiaopu Wang & Shuyang Liu, 2022. "Permeability Models of Hydrate-Bearing Sediments: A Comprehensive Review with Focus on Normalized Permeability," Energies, MDPI, vol. 15(13), pages 1-65, June.
    3. Lei, Xin & Yao, Yanbin & Sun, Xiaoxiao & Wen, Zhiang & Ma, Yuhua, 2022. "Permeability change with respect to different hydrate saturation in clayey-silty sediments," Energy, Elsevier, vol. 254(PA).
    4. Wu, Peng & Li, Yanghui & Yu, Tao & Wu, Zhaoran & Huang, Lei & Wang, Haijun & Song, Yongchen, 2023. "Microstructure evolution and dynamic permeability anisotropy during hydrate dissociation in sediment under stress state," Energy, Elsevier, vol. 263(PE).
    5. Guo, Zeyu & Fang, Qidong & Nong, Mingyan & Ren, Xingwei, 2021. "A novel Kozeny-Carman-based permeability model for hydrate-bearing sediments," Energy, Elsevier, vol. 234(C).
    6. Li, Ruirui & Zhang, Luqing & Han, Zhenhua & Zhou, Jian & Wang, Song & Schüttrumpf, Holger, 2023. "Effect of interlayer mixed zone and effective stress on permeability anisotropy of NGH turbidite reservoir," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong, 2019. "3D visualization of fluid flow behaviors during methane hydrate extraction by hot water injection," Energy, Elsevier, vol. 188(C).
    2. Zheng, Ruyi & Li, Shuxia & Li, Qingping & Li, Xiaoli, 2018. "Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs," Applied Energy, Elsevier, vol. 215(C), pages 405-415.
    3. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong & Song, Yongchen, 2021. "Numerical evaluation of free gas accumulation behavior in a reservoir during methane hydrate production using a multiple-well system," Energy, Elsevier, vol. 218(C).
    4. Minghao Yu & Weizhong Li & Bo Dong & Cong Chen & Xin Wang, 2018. "Simulation for the Effects of Well Pressure and Initial Temperature on Methane Hydrate Dissociation," Energies, MDPI, vol. 11(5), pages 1-13, May.
    5. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2017. "Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation," Applied Energy, Elsevier, vol. 207(C), pages 562-572.
    6. Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.
    7. Li, Gang & Wu, Dan-Mei & Li, Xiao-Sen & Lv, Qiu-Nan & Li, Chao & Zhang, Yu, 2017. "Experimental measurement and mathematical model of permeability with methane hydrate in quartz sands," Applied Energy, Elsevier, vol. 202(C), pages 282-292.
    8. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
    9. Yu, Tao & Guan, Guoqing & Abudula, Abuliti, 2019. "Production performance and numerical investigation of the 2017 offshore methane hydrate production test in the Nankai Trough of Japan," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Wang, Xiao-Hui & Chen, Yun & Li, Xing-Xun & Xu, Qiang & Kan, Jing-Yu & Sun, Chang-Yu & Chen, Guang-Jin, 2021. "An exergy-based energy efficiency analysis on gas production from gas hydrates reservoir by brine stimulation combined depressurization method," Energy, Elsevier, vol. 231(C).
    11. Tan, Lin & Liu, Fang & Dai, Sheng & Yao, Junlan, 2024. "A bibliometric analysis of two-decade research efforts in turning natural gas hydrates into energy," Energy, Elsevier, vol. 299(C).
    12. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen, 2016. "Hydrate dissociation induced by depressurization in conjunction with warm brine stimulation in cubic hydrate simulator with silica sand," Applied Energy, Elsevier, vol. 174(C), pages 181-191.
    13. Ma, Shihui & Zheng, Jia-nan & Tang, Dawei & Lv, Xin & Li, Qingping & Yang, Mingjun, 2019. "Experimental investigation on the decomposition characteristics of natural gas hydrates in South China Sea sediments by a micro-differential scanning calorimeter," Applied Energy, Elsevier, vol. 254(C).
    14. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2016. "Experimental and modeling analyses of scaling criteria for methane hydrate dissociation in sediment by depressurization," Applied Energy, Elsevier, vol. 181(C), pages 299-309.
    15. Wang, Xiao-Hui & Sun, Yi-Fei & Wang, Yun-Fei & Li, Nan & Sun, Chang-Yu & Chen, Guang-Jin & Liu, Bei & Yang, Lan-Ying, 2017. "Gas production from hydrates by CH4-CO2/H2 replacement," Applied Energy, Elsevier, vol. 188(C), pages 305-314.
    16. Chen, Ye & Gao, Yonghai & Zhao, Yipeng & Chen, Litao & Dong, Changyin & Sun, Baojiang, 2018. "Experimental investigation of different factors influencing the replacement efficiency of CO2 for methane hydrate," Applied Energy, Elsevier, vol. 228(C), pages 309-316.
    17. Yang, Mingjun & Zheng, Jia-nan & Gao, Yi & Ma, Zhanquan & Lv, Xin & Song, Yongchen, 2019. "Dissociation characteristics of methane hydrates in South China Sea sediments by depressurization," Applied Energy, Elsevier, vol. 243(C), pages 266-273.
    18. Wang, Bin & Fan, Zhen & Wang, Pengfei & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2018. "Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation," Applied Energy, Elsevier, vol. 227(C), pages 624-633.
    19. Zhao, Jiafei & Fan, Zhen & Wang, Bin & Dong, Hongsheng & Liu, Yu & Song, Yongchen, 2016. "Simulation of microwave stimulation for the production of gas from methane hydrate sediment," Applied Energy, Elsevier, vol. 168(C), pages 25-37.
    20. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:205:y:2020:i:c:s036054422031104x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.