IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223025665.html
   My bibliography  Save this article

Effect of interlayer mixed zone and effective stress on permeability anisotropy of NGH turbidite reservoir

Author

Listed:
  • Li, Ruirui
  • Zhang, Luqing
  • Han, Zhenhua
  • Zhou, Jian
  • Wang, Song
  • Schüttrumpf, Holger

Abstract

Resulting from the bedding structure of turbidite reservoir, permeability anisotropy is an essential parameter for natural gas hydrate (NGH) exploitation. Fundamentally, the evolution of permeability anisotropy under increasing effective stress are investigated in this study. Taking the turbidite sediments in northern Cascadia as an example, a series of experimental tests and co-simulations of discrete element method (DEM) and computational fluid dynamics method (CFD) are conducted. For layered turbidite sediments, an interlayer mixed zone will be formed in the interface between fine-grained layer and coarse-grained layer after loading. Fine particles will migrate to the coarse layer, blocking the horizontal preponderance flow paths and further reduce the permeability anisotropy. Moreover, the development of interlayer mixed zone mainly occurs in initial compaction stage and slows down in higher stress level, for which the permeability anisotropy shows a staged reduction with increasing effective stress. Considering the effect of interlayer mixed zone, a predictive model of permeability anisotropy is proposed and verified by the experimental results, which has higher accuracy than traditional “layered cake” model. The finding of this research also confirms the mixing effect in deep sediments, which may affect the geological history records in target sedimentary sequence.

Suggested Citation

  • Li, Ruirui & Zhang, Luqing & Han, Zhenhua & Zhou, Jian & Wang, Song & Schüttrumpf, Holger, 2023. "Effect of interlayer mixed zone and effective stress on permeability anisotropy of NGH turbidite reservoir," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223025665
    DOI: 10.1016/j.energy.2023.129172
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223025665
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Chen, Zhao-Yang, 2021. "Heterogeneity of hydrate-bearing sediments: Definition and effects on fluid flow properties," Energy, Elsevier, vol. 229(C).
    2. Shasha Song & Isaac R. Santos & Huaming Yu & Faming Wang & William C. Burnett & Thomas S. Bianchi & Junyu Dong & Ergang Lian & Bin Zhao & Lawrence Mayer & Qingzhen Yao & Zhigang Yu & Bochao Xu, 2022. "A global assessment of the mixed layer in coastal sediments and implications for carbon storage," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Wang, Jiaqi & Zhang, Lunxiang & Ge, Kun & Zhao, Jiafei & Song, Yongcheng, 2020. "Characterizing anisotropy changes in the permeability of hydrate sediment," Energy, Elsevier, vol. 205(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianchun Xu & Ziwei Bu & Hangyu Li & Xiaopu Wang & Shuyang Liu, 2022. "Permeability Models of Hydrate-Bearing Sediments: A Comprehensive Review with Focus on Normalized Permeability," Energies, MDPI, vol. 15(13), pages 1-65, June.
    2. Wu, Peng & Li, Yanghui & Yu, Tao & Wu, Zhaoran & Huang, Lei & Wang, Haijun & Song, Yongchen, 2023. "Microstructure evolution and dynamic permeability anisotropy during hydrate dissociation in sediment under stress state," Energy, Elsevier, vol. 263(PE).
    3. Wan, Kun & Wu, Tian-Wei & Wang, Yi & Li, Xiao-Sen & Liu, Jian-Wu & Kou, Xuan & Feng, Jing-Chun, 2023. "Large-scale experimental study of heterogeneity in different types of hydrate reservoirs by horizontal well depressurization method," Applied Energy, Elsevier, vol. 332(C).
    4. Kou, Xuan & Zhang, Heng & Li, Xiao-Sen & Chen, Zhao-Yang & Wang, Yi, 2024. "Methane hydrate phase transition in marine clayey sediments: Enhanced structure change and solid migration," Applied Energy, Elsevier, vol. 368(C).
    5. Golsanami, Naser & Jayasuriya, Madusanka N. & Yan, Weichao & Fernando, Shanilka G. & Liu, Xuefeng & Cui, Likai & Zhang, Xuepeng & Yasin, Qamar & Dong, Huaimin & Dong, Xu, 2022. "Characterizing clay textures and their impact on the reservoir using deep learning and Lattice-Boltzmann simulation applied to SEM images," Energy, Elsevier, vol. 240(C).
    6. Guo, Zeyu & Chen, Xin & Wang, Bo & Ren, Xingwei, 2023. "Two-phase relative permeability of hydrate-bearing sediments: A theoretical model," Energy, Elsevier, vol. 275(C).
    7. Song, Rui & Liu, Jianjun & Yang, Chunhe & Sun, Shuyu, 2022. "Study on the multiphase heat and mass transfer mechanism in the dissociation of methane hydrate in reconstructed real-shape porous sediments," Energy, Elsevier, vol. 254(PC).
    8. Bian, Hang & Qin, Xuwen & Sun, Jinsheng & Luo, Wanjing & Lu, Cheng & Zhu, Jian & Ma, Chao & Zhou, Yingfang, 2023. "The impact of mineral compositions on hydrate morphology evolution and phase transition hysteresis in natural clayey silts," Energy, Elsevier, vol. 274(C).
    9. Li, Yanghui & Wei, Zhaosheng & Wang, Haijun & Wu, Peng & Zhang, Shuheng & You, Zeshao & Liu, Tao & Huang, Lei & Song, Yongchen, 2024. "Impact of hydrate spatial heterogeneity on gas permeability in hydrate-bearing sediments," Energy, Elsevier, vol. 293(C).
    10. Yang, Lei & Shi, Kangji & Qu, Aoxing & Liang, Huiyong & Li, Qingping & Lv, Xin & Leng, Shudong & Liu, Yanzhen & Zhang, Lunxiang & Liu, Yu & Xiao, Bo & Yang, Shengxiong & Zhao, Jiafei & Song, Yongchen, 2023. "The locally varying thermodynamic driving force dominates the gas production efficiency from natural gas hydrate-bearing marine sediments," Energy, Elsevier, vol. 276(C).
    11. Guo, Zeyu & Fang, Qidong & Nong, Mingyan & Ren, Xingwei, 2021. "A novel Kozeny-Carman-based permeability model for hydrate-bearing sediments," Energy, Elsevier, vol. 234(C).
    12. He, Juan & Li, Xiaosen & Chen, Zhaoyang & Huang, Xiaoliang & Shen, Pengfei, 2023. "Effect of heterogeneous hydrate distribution on hydrate production under different hole combinations," Energy, Elsevier, vol. 283(C).
    13. Hao Peng & Xiaosen Li & Zhaoyang Chen & Yu Zhang & Changyu You, 2022. "Key Points and Current Studies on Seepage Theories of Marine Natural Gas Hydrate-Bearing Sediments: A Narrative Review," Energies, MDPI, vol. 15(14), pages 1-33, July.
    14. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Formation mechanism of heterogeneous hydrate-bearing sediments," Applied Energy, Elsevier, vol. 326(C).
    15. Lei, Xin & Yao, Yanbin & Sun, Xiaoxiao & Wen, Zhiang & Ma, Yuhua, 2022. "Permeability change with respect to different hydrate saturation in clayey-silty sediments," Energy, Elsevier, vol. 254(PA).
    16. Song, Rui & Sun, Shuyu & Liu, Jianjun & Yang, Chunhe, 2021. "Pore scale modeling on dissociation and transportation of methane hydrate in porous sediments," Energy, Elsevier, vol. 237(C).
    17. Li, Ruirui & Zhang, Luqing & Zhou, Jian & Han, Zhenhua & Pan, Zhejun & Schüttrumpf, Holger, 2023. "Investigation on permeability anisotropy in unconsolidated hydrate-bearing sediments based on pore-scale numerical simulation: Effect of mineral particle shape and pore-filling," Energy, Elsevier, vol. 267(C).
    18. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Memory effect of gas hydrate: Influencing factors of hydrate reformation and dissociation behaviors☆," Applied Energy, Elsevier, vol. 306(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223025665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.