Soil temperature gradient as a useful tool for small water leakage detection from district heating pipes in buried channels
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.117684
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ziemele, Jelena & Gravelsins, Armands & Blumberga, Andra & Blumberga, Dagnija, 2017. "Combining energy efficiency at source and at consumer to reach 4th generation district heating: Economic and system dynamics analysis," Energy, Elsevier, vol. 137(C), pages 595-606.
- Sartor, K. & Quoilin, S. & Dewallef, P., 2014. "Simulation and optimization of a CHP biomass plant and district heating network," Applied Energy, Elsevier, vol. 130(C), pages 474-483.
- Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
- Volkova, Anna & Mašatin, Vladislav & Siirde, Andres, 2018. "Methodology for evaluating the transition process dynamics towards 4th generation district heating networks," Energy, Elsevier, vol. 150(C), pages 253-261.
- Perpar, Matjaz & Rek, Zlatko & Bajric, Suvad & Zun, Iztok, 2012. "Soil thermal conductivity prediction for district heating pre-insulated pipeline in operation," Energy, Elsevier, vol. 44(1), pages 197-210.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yan, Jingjing & Zhang, Huan & Wang, Yaran & Zheng, Lijun & Gao, Xinyong & You, Shijun, 2022. "Valve failure detection of the long-distance district heating pipeline by hydraulic oscillation recognition: A numerical approach," Energy, Elsevier, vol. 261(PA).
- Sun, Chunhua & Zhang, Haixiang & Cao, Shanshan & Xia, Guoqiang & Zhong, Jian & Wu, Xiangdong, 2023. "A hierarchical classifying and two-step training strategy for detection and diagnosis of anormal temperature in district heating system," Applied Energy, Elsevier, vol. 349(C).
- Jing, Mengke & Zhang, Shujie & Fu, Lisong & Cao, Guoquan & Wang, Rui, 2023. "Reducing heat losses from aging district heating pipes by using cured-in-place pipe liners," Energy, Elsevier, vol. 273(C).
- Matjaž Perpar & Zlatko Rek, 2021. "The Ability of a Soil Temperature Gradient-Based Methodology to Detect Leaks from Pipelines in Buried District Heating Channels," Energies, MDPI, vol. 14(18), pages 1-13, September.
- Yihong Guan & Mou Lv & Shen Dong, 2023. "Pressure-driven Background Leakage Models and their Application for Leak Localization Using a Multi-population Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 359-373, January.
- Zheng, Xuejing & Hu, Fangshu & Wang, Yaran & Zheng, Lijun & Gao, Xinyong & Zhang, Huan & You, Shijun & Xu, Boxiao, 2021. "Leak detection of long-distance district heating pipeline: A hydraulic transient model-based approach," Energy, Elsevier, vol. 237(C).
- Yan, Jingjing & Zhang, Huan & Wang, Yaran & Zhu, Zhaozhe & Bai, He & Li, Qicheng & You, Shijun, 2024. "Pump-stopping-induced hydraulic oscillations in long-distance district heating system: Modelling and a comprehensive analysis of critical factors," Energy, Elsevier, vol. 294(C).
- Zhu, Jianlu & Wang, Sailei & Pan, Jun & Lv, Hao & Zhang, Yixiang & Han, Hui & Liu, Cuiwei & Duo, Zhili & Li, Yuxing, 2024. "Experimental study on leakage temperature field of hydrogen blending into natural gas buried pipeline," Applied Energy, Elsevier, vol. 359(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ronelly De Souza & Emanuele Nadalon & Melchiorre Casisi & Mauro Reini, 2022. "Optimal Sharing Electricity and Thermal Energy Integration for an Energy Community in the Perspective of 100% RES Scenario," Sustainability, MDPI, vol. 14(16), pages 1-39, August.
- Ziemele, Jelena & Cilinskis, Einars & Blumberga, Dagnija, 2018. "Pathway and restriction in district heating systems development towards 4th generation district heating," Energy, Elsevier, vol. 152(C), pages 108-118.
- Víctor M. Soltero & Ricardo Chacartegui & Carlos Ortiz & Gonzalo Quirosa, 2018. "Techno-Economic Analysis of Rural 4th Generation Biomass District Heating," Energies, MDPI, vol. 11(12), pages 1-20, November.
- Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
- Ziemele, Jelena & Dace, Elina, 2022. "An analytical framework for assessing the integration of the waste heat into a district heating system: Case of the city of Riga," Energy, Elsevier, vol. 254(PB).
- Xu, Ziqiang & Li, Cheng & Mu, Lianbo & Wang, Suilin & Lu, Junhui & Lan, Yuncheng, 2024. "Leakage detection method of underground heating pipeline based on improved wavelet threshold function," Energy, Elsevier, vol. 295(C).
- Stanislav Chicherin & Vladislav Mašatin & Andres Siirde & Anna Volkova, 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy," Energies, MDPI, vol. 13(17), pages 1-15, September.
- Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
- Munćan, Vladimir & Mujan, Igor & Macura, Dušan & Anđelković, Aleksandar S., 2024. "The state of district heating and cooling in Europe - A literature-based assessment," Energy, Elsevier, vol. 304(C).
- Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
- Pakere, Ieva & Gravelsins, Armands & Lauka, Dace & Bazbauers, Gatis & Blumberga, Dagnija, 2021. "Linking energy efficiency policies toward 4th generation district heating system," Energy, Elsevier, vol. 234(C).
- Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
- Søren Djørup & Karl Sperling & Steffen Nielsen & Poul Alborg Østergaard & Jakob Zinck Thellufsen & Peter Sorknæs & Henrik Lund & David Drysdale, 2020. "District Heating Tariffs, Economic Optimisation and Local Strategies during Radical Technological Change," Energies, MDPI, vol. 13(5), pages 1-15, March.
- Aleksandar Ivančić & Joaquim Romaní & Jaume Salom & Maria-Victoria Cambronero, 2021. "Performance Assessment of District Energy Systems with Common Elements for Heating and Cooling," Energies, MDPI, vol. 14(8), pages 1-22, April.
- Salah Vaisi & Saleh Mohammadi & Kyoumars Habibi, 2021. "Heat Mapping, a Method for Enhancing the Sustainability of the Smart District Heat Networks," Energies, MDPI, vol. 14(17), pages 1-17, September.
- Kurek, Teresa & Bielecki, Artur & Świrski, Konrad & Wojdan, Konrad & Guzek, Michał & Białek, Jakub & Brzozowski, Rafał & Serafin, Rafał, 2021. "Heat demand forecasting algorithm for a Warsaw district heating network," Energy, Elsevier, vol. 217(C).
- Pavel Rušeljuk & Kertu Lepiksaar & Andres Siirde & Anna Volkova, 2021. "Economic Dispatch of CHP Units through District Heating Network’s Demand-Side Management," Energies, MDPI, vol. 14(15), pages 1-20, July.
- Lorenzen, Peter & Alvarez-Bel, Carlos, 2022. "Variable cost evaluation of heating plants in district heating systems considering the temperature impact," Applied Energy, Elsevier, vol. 305(C).
- Kılkış, Şiir, 2021. "Transition towards urban system integration and benchmarking of an urban area to accelerate mitigation towards net-zero targets," Energy, Elsevier, vol. 236(C).
- Formhals, Julian & Feike, Frederik & Hemmatabady, Hoofar & Welsch, Bastian & Sass, Ingo, 2021. "Strategies for a transition towards a solar district heating grid with integrated seasonal geothermal energy storage," Energy, Elsevier, vol. 228(C).
More about this item
Keywords
District heating; Heat loss; Numerical simulation; Equivalent thermal conductivity; Soil temperature gradient; Leakage detection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:201:y:2020:i:c:s036054422030791x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.