IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v196y2020ics0360544220301924.html
   My bibliography  Save this article

Energy saving in the process of bioethanol production from renewable paper mill sludge

Author

Listed:
  • Salameh, Tareq
  • Tawalbeh, Muhammad
  • Al-Shannag, Mohammad
  • Saidan, Motasem
  • Melhem, Khalid Bani
  • Alkasrawi, Malek

Abstract

Paper mill sludge (PMS) can be efficiently utilized to produce fuels and chemicals. However, wastewater is usually generated during the de-ashing step of the PMS for fibrous materials recovery. Per process requirements, the wastewater stream must be treated which results in an increase in the overall process production cost. Therefore, this research aims at reusing the wastewater produced during the de-ashing step as a substitute for freshwater addition during the conversion of PMS into ethanol. The advantages of this approach include reducing the amount of wastewater produced and enhancing the overall efficiency of the process. It will contribute to the circular economy of zero waste discharges. The results showed that 30% of the process wastewater can be recycled without affecting the enzymatic hydrolysis and ethanol fermentation. Hence, the amount of wastewater that needs to be treated is reduced by 30% resulting in a cost reduction of 22.5%. The results also showed that wastewater recycling minimized the energy demands in the distillation and evaporation units by 1206 kJ/kg. The energy reduction is due to the increase of metals and total soluble solids in the broth stream after fermentation. This process configuration enhanced the process economy, saved energy and managed waste streams.

Suggested Citation

  • Salameh, Tareq & Tawalbeh, Muhammad & Al-Shannag, Mohammad & Saidan, Motasem & Melhem, Khalid Bani & Alkasrawi, Malek, 2020. "Energy saving in the process of bioethanol production from renewable paper mill sludge," Energy, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:energy:v:196:y:2020:i:c:s0360544220301924
    DOI: 10.1016/j.energy.2020.117085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220301924
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Selvaratnam, T. & Henkanatte-Gedera, S.M. & Muppaneni, T. & Nirmalakhandan, N. & Deng, S. & Lammers, P.J., 2016. "Maximizing recovery of energy and nutrients from urban wastewaters," Energy, Elsevier, vol. 104(C), pages 16-23.
    2. Mehr, A.S. & MosayebNezhad, M. & Lanzini, A. & Yari, M. & Mahmoudi, S.M.S. & Santarelli, M., 2018. "Thermodynamic assessment of a novel SOFC based CCHP system in a wastewater treatment plant," Energy, Elsevier, vol. 150(C), pages 299-309.
    3. Badgett, Alex & Newes, Emily & Milbrandt, Anelia, 2019. "Economic analysis of wet waste-to-energy resources in the United States," Energy, Elsevier, vol. 176(C), pages 224-234.
    4. García-Velásquez, Carlos A. & Cardona, Carlos A., 2019. "Comparison of the biochemical and thermochemical routes for bioenergy production: A techno-economic (TEA), energetic and environmental assessment," Energy, Elsevier, vol. 172(C), pages 232-242.
    5. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    6. Mlonka-Mędrala, Agata & Gołombek, Klaudiusz & Buk, Paulina & Cieślik, Ewelina & Nowak, Wojciech, 2019. "The influence of KCl on biomass ash melting behaviour and high-temperature corrosion of low-alloy steel," Energy, Elsevier, vol. 188(C).
    7. Sun, Chi-He & Fu, Qian & Liao, Qiang & Xia, Ao & Huang, Yun & Zhu, Xun & Reungsang, Alissara & Chang, Hai-Xing, 2019. "Life-cycle assessment of biofuel production from microalgae via various bioenergy conversion systems," Energy, Elsevier, vol. 171(C), pages 1033-1045.
    8. Khajeeram, Sutamat & Unrean, Pornkamol, 2017. "Techno-economic assessment of high-solid simultaneous saccharification and fermentation and economic impacts of yeast consortium and on-site enzyme production technologies," Energy, Elsevier, vol. 122(C), pages 194-203.
    9. Licari, A. & Monlau, F. & Solhy, A. & Buche, P. & Barakat, A., 2016. "Comparison of various milling modes combined to the enzymatic hydrolysis of lignocellulosic biomass for bioenergy production: Glucose yield and energy efficiency," Energy, Elsevier, vol. 102(C), pages 335-342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chong, Ting Yen & Cheah, Siang Aun & Ong, Chin Tye & Wong, Lee Yi & Goh, Chern Rui & Tan, Inn Shi & Foo, Henry Chee Yew & Lam, Man Kee & Lim, Steven, 2020. "Techno-economic evaluation of third-generation bioethanol production utilizing the macroalgae waste: A case study in Malaysia," Energy, Elsevier, vol. 210(C).
    2. Alkasrawi, Malek & Al-Othman, Amani & Tawalbeh, Muhammad & Doncan, Shona & Gurram, Raghu & Singsaas, Eric & Almomani, Fares & Al-Asheh, Sameer, 2021. "A novel technique of paper mill sludge conversion to bioethanol toward sustainable energy production: Effect of fiber recovery on the saccharification hydrolysis and fermentation," Energy, Elsevier, vol. 223(C).
    3. Mohammad Alnaief & Arwa Sandouqa & Ibrahem Altarawneh & Mohammad Al-Shannag & Malek Alkasrawi & Zayed Al-hamamre, 2020. "Adsorption Characteristics and Potential of Olive Cake Alkali Residues for Biodiesel Purification," Energies, MDPI, vol. 14(1), pages 1-12, December.
    4. Remston Martis & Amani Al-Othman & Muhammad Tawalbeh & Malek Alkasrawi, 2020. "Energy and Economic Analysis of Date Palm Biomass Feedstock for Biofuel Production in UAE: Pyrolysis, Gasification and Fermentation," Energies, MDPI, vol. 13(22), pages 1-34, November.
    5. Lei Han & Jinling Li & Chengtun Qu & Zhiguo Shao & Tao Yu & Bo Yang, 2022. "Recent Progress in Sludge Co-Pyrolysis Technology," Sustainability, MDPI, vol. 14(13), pages 1-12, June.
    6. Ebtihal A. AlDayyat & Motasem N. Saidan & Zayed Al-Hamamre & Mohammad Al-Addous & Malek Alkasrawi, 2021. "Pyrolysis of Solid Waste for Bio-Oil and Char Production in Refugees’ Camp: A Case Study," Energies, MDPI, vol. 14(13), pages 1-11, June.
    7. Shona M. Duncan & Malek Alkasrawi & Raghu Gurram & Fares Almomani & Amy E Wiberley-Bradford & Eric Singsaas, 2020. "Paper Mill Sludge as a Source of Sugars for Use in the Production of Bioethanol and Isoprene," Energies, MDPI, vol. 13(18), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Junjie & Zhang, Yueling & Yang, Yanli & Zhang, Xiaomei & Wang, Nana & Zheng, Yonghong & Tian, Yajun & Xie, Kechang, 2022. "Life cycle assessment and techno-economic analysis of ethanol production via coal and its competitors: A comparative study," Applied Energy, Elsevier, vol. 312(C).
    2. Li, Wen-Chao & Li, Xia & Zhu, Jia-Qing & Qin, Lei & Li, Bing-Zhi & Yuan, Ying-Jin, 2018. "Improving xylose utilization and ethanol production from dry dilute acid pretreated corn stover by two-step and fed-batch fermentation," Energy, Elsevier, vol. 157(C), pages 877-885.
    3. Canabarro, N.I. & Silva-Ortiz, P. & Nogueira, L.A.H. & Cantarella, H. & Maciel-Filho, R. & Souza, G.M., 2023. "Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    4. Su, Bosheng & Han, Wei & Zhang, Xiaosong & Chen, Yi & Wang, Zefeng & Jin, Hongguang, 2018. "Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy," Applied Energy, Elsevier, vol. 229(C), pages 922-935.
    5. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Zhang, Yi & Soldatov, Sergey & Papachristou, Ioannis & Nazarova, Natalja & Link, Guido & Frey, Wolfgang & Silve, Aude, 2022. "Pulsed microwave pretreatment of fresh microalgae for enhanced lipid extraction," Energy, Elsevier, vol. 248(C).
    7. Wiatrowski, Matthew R. & Miller, Jacob H. & Bhatt, Arpit & Tifft, Stephen M. & Abdullah, Zia & Tao, Ling, 2024. "Economic and sustainability prospects for wet waste valorization: The case for sustainable aviation fuel from arrested anaerobic digestion," Renewable Energy, Elsevier, vol. 232(C).
    8. Sun, Chihe & Xia, Ao & Liao, Qiang & Fu, Qian & Huang, Yun & Zhu, Xun, 2019. "Life-cycle assessment of biohythane production via two-stage anaerobic fermentation from microalgae and food waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 395-410.
    9. Vasilakou, K. & Nimmegeers, P. & Billen, P. & Van Passel, S., 2023. "Geospatial environmental techno-economic assessment of pretreatment technologies for bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    10. Elio, Joseph & Milcarek, Ryan J., 2022. "Techno-economic analysis and case study of combined heat and power systems in a wastewater treatment plant," Energy, Elsevier, vol. 260(C).
    11. Mei, Shuxue & Lu, Xiaorui & Zhu, Yu & Wang, Shixue, 2021. "Thermodynamic assessment of a system configuration strategy for a cogeneration system combining SOFC, thermoelectric generator, and absorption heat pump," Applied Energy, Elsevier, vol. 302(C).
    12. Piadehrouhi, Forough & Ghorbani, Bahram & Miansari, Mehdi & Mehrpooya, Mehdi, 2019. "Development of a new integrated structure for simultaneous generation of power and liquid carbon dioxide using solar dish collectors," Energy, Elsevier, vol. 179(C), pages 938-959.
    13. Park, Heejin & Jung, Yoonju & Park, Chungi & Lee, Jaeseung & Ghasemi, Masoomeh & Alam, Afroz & Kim, Hyeonjin & Kim, Jinwook & Park, Sojin & Choi, Kyungshik & You, Hyunseok & Ju, Hyunchul, 2023. "Performance evaluation and economic feasibility of a PAFC-based multi-energy hub system in South Korea," Energy, Elsevier, vol. 278(PB).
    14. Bagnato, Giuseppe & Boulet, Florent & Sanna, Aimaro, 2019. "Effect of Li-LSX zeolite, NiCe/Al2O3 and NiCe/ZrO2 on the production of drop-in bio-fuels by pyrolysis and hydrotreating of Nannochloropsis and isochrysis microalgae," Energy, Elsevier, vol. 179(C), pages 199-213.
    15. MosayebNezhad, M. & Mehr, A.S. & Lanzini, A. & Misul, D. & Santarelli, M., 2019. "Technology review and thermodynamic performance study of a biogas-fed micro humid air turbine," Renewable Energy, Elsevier, vol. 140(C), pages 407-418.
    16. Ding, Lingkan & Chan Gutierrez, Enrique & Cheng, Jun & Xia, Ao & O'Shea, Richard & Guneratnam, Amita Jacob & Murphy, Jerry D., 2018. "Assessment of continuous fermentative hydrogen and methane co-production using macro- and micro-algae with increasing organic loading rate," Energy, Elsevier, vol. 151(C), pages 760-770.
    17. Molaverdi, Maryam & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora, 2019. "Improvement of dry simultaneous saccharification and fermentation of rice straw to high concentration ethanol by sodium carbonate pretreatment," Energy, Elsevier, vol. 167(C), pages 654-660.
    18. Hrabec, Dušan & Šomplák, Radovan & Nevrlý, Vlastimír & Viktorin, Adam & Pluháček, Michal & Popela, Pavel, 2020. "Sustainable waste-to-energy facility location: Influence of demand on energy sales," Energy, Elsevier, vol. 207(C).
    19. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.
    20. Badshah, Noor & Al-attab, K.A. & Zainal, Z.A., 2020. "Design optimization and experimental analysis of externally fired gas turbine system fuelled by biomass," Energy, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:196:y:2020:i:c:s0360544220301924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.