IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v195y2020ics0360544220301183.html
   My bibliography  Save this article

Optimal placement, sizing and power factor of distributed generation: A comprehensive study spanning from the planning stage to the operation stage

Author

Listed:
  • Huy, Phung Dang
  • Ramachandaramurthy, Vigna K.
  • Yong, Jia Ying
  • Tan, Kang Miao
  • Ekanayake, Janaka B.

Abstract

In this paper, an optimised framework utilising a Differential Evolution algorithm is presented to optimally integrate multiple distributed generation sources simultaneously into the distribution grid. By considering the important power system constraints, the proposed algorithm optimises the location, sizing and power factor setting for each distributed generation source to minimise network losses and maximise distributed generation integration. Various case studies were conducted at constant or varying levels of load and generation in both the planning stage and the real-time operation stage. The results of all case studies revealed that the proposed Differential Evolution-based algorithm delivered better performance in terms of network loss reduction and maximised distributed generation compared to other existing methods. The network loss reduction of 95.71% was achieved when all three parameters of placement, sizing and power factor of distributed generation were optimised simultaneously. In addition, a practical framework with a varying optimal power factor for distributed generation was designed. The optimal power factor setting for each distributed generation source was dynamically adjusted during real-time power grid operation, resulting in further minimisation of the system loss reduction. The overall loss reduction achieved was 96.04% relative to the base case of no distributed generation connection.

Suggested Citation

  • Huy, Phung Dang & Ramachandaramurthy, Vigna K. & Yong, Jia Ying & Tan, Kang Miao & Ekanayake, Janaka B., 2020. "Optimal placement, sizing and power factor of distributed generation: A comprehensive study spanning from the planning stage to the operation stage," Energy, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220301183
    DOI: 10.1016/j.energy.2020.117011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220301183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Yuchen & Cheng, John W.M. & Duan, Qinwei & Lee, Cheuk Wing & Zhong, Jin, 2019. "Evaluating the variability of photovoltaics: A new stochastic method to generate site-specific synthetic solar data and applications to system studies," Renewable Energy, Elsevier, vol. 133(C), pages 1099-1107.
    2. Zhang, Shenxi & Cheng, Haozhong & Li, Ke & Tai, Nengling & Wang, Dan & Li, Furong, 2018. "Multi-objective distributed generation planning in distribution network considering correlations among uncertainties," Applied Energy, Elsevier, vol. 226(C), pages 743-755.
    3. Lotfi, Hossein & Khodaei, Amin, 2017. "Hybrid AC/DC microgrid planning," Energy, Elsevier, vol. 118(C), pages 37-46.
    4. Sunny Katyara & Lukasz Staszewski & Zbigniew Leonowicz, 2018. "Protection Coordination of Properly Sized and Placed Distributed Generations–Methods, Applications and Future Scope," Energies, MDPI, vol. 11(10), pages 1-22, October.
    5. Shah, Rakibuzzaman & Mithulananthan, N. & Bansal, R.C. & Ramachandaramurthy, V.K., 2015. "A review of key power system stability challenges for large-scale PV integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1423-1436.
    6. Jamil, Majid & Anees, Ahmed Sharique, 2016. "Optimal sizing and location of SPV (solar photovoltaic) based MLDG (multiple location distributed generator) in distribution system for loss reduction, voltage profile improvement with economical bene," Energy, Elsevier, vol. 103(C), pages 231-239.
    7. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Ding, Fei & Wu, Jianzhong, 2018. "A centralized-based method to determine the local voltage control strategies of distributed generator operation in active distribution networks," Applied Energy, Elsevier, vol. 228(C), pages 2024-2036.
    8. Zhong Shi & Zhijie Wang & Yue Jin & Nengling Tai & Xiuchen Jiang & Xiaoyu Yang, 2018. "Optimal Allocation of Intermittent Distributed Generation under Active Management," Energies, MDPI, vol. 11(10), pages 1-19, September.
    9. Nieves, J.A. & Aristizábal, A.J. & Dyner, I. & Báez, O. & Ospina, D.H., 2019. "Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application," Energy, Elsevier, vol. 169(C), pages 380-397.
    10. Rodríguez-Gallegos, Carlos D. & Yang, Dazhi & Gandhi, Oktoviano & Bieri, Monika & Reindl, Thomas & Panda, S.K., 2018. "A multi-objective and robust optimization approach for sizing and placement of PV and batteries in off-grid systems fully operated by diesel generators: An Indonesian case study," Energy, Elsevier, vol. 160(C), pages 410-429.
    11. Nousdilis, Angelos I. & Christoforidis, Georgios C. & Papagiannis, Grigoris K., 2018. "Active power management in low voltage networks with high photovoltaics penetration based on prosumers’ self-consumption," Applied Energy, Elsevier, vol. 229(C), pages 614-624.
    12. Wang, Zhenfeng & Xu, Guangyin & Wang, Heng & Ren, Jingzheng, 2019. "Distributed energy system for sustainability transition: A comprehensive assessment under uncertainties based on interval multi-criteria decision making method by coupling interval DEMATEL and interva," Energy, Elsevier, vol. 169(C), pages 750-761.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ardiaty Arief & Muhammad Bachtiar Nappu, 2023. "Novel Hybrid Modified Modal Analysis and Continuation Power Flow Method for Unity Power Factor DER Placement," Energies, MDPI, vol. 16(4), pages 1-18, February.
    2. Akintunde S. Alayande & O. D. Owoicho & Tobiloba Emmanuel Somefun & Joseph Olowoleni & Ignatius K. Okakwu & Ademola Abdulkareem, 2021. "Power Quality Considerations for Distributed Generation Integration in the Nigerian Distribution Network Using NEPLAN Software," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 331-342.
    3. Andrés Felipe Buitrago-Velandia & Oscar Danilo Montoya & Walter Gil-González, 2021. "Dynamic Reactive Power Compensation in Power Systems through the Optimal Siting and Sizing of Photovoltaic Sources," Resources, MDPI, vol. 10(5), pages 1-17, May.
    4. David Calvachi & Luis Tipán & Manuel Jaramillo, 2023. "Localization and Sizing of Distributed Generation through a Genetic Algorithm to Improve Voltage Profile Using Ecuadorian Standards," Energies, MDPI, vol. 16(10), pages 1-19, May.
    5. Pramod Kumar & Nagendra Kumar Swarnkar & Ahmed Ali & Om Prakash Mahela & Baseem Khan & Divya Anand & Julien Brito Ballester, 2023. "Transmission Network Loss Reduction and Voltage Profile Improvement Using Network Restructuring and Optimal DG Placement," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    6. Li, Yang & Feng, Bo & Wang, Bin & Sun, Shuchao, 2022. "Joint planning of distributed generations and energy storage in active distribution networks: A Bi-Level programming approach," Energy, Elsevier, vol. 245(C).
    7. Oludamilare Bode Adewuyi & Ayooluwa Peter Adeagbo & Isaiah Gbadegesin Adebayo & Harun Or Rashid Howlader & Yanxia Sun, 2021. "Modified Analytical Approach for PV-DGs Integration into a Radial Distribution Network Considering Loss Sensitivity and Voltage Stability," Energies, MDPI, vol. 14(22), pages 1-20, November.
    8. Jean-Michel Clairand & Carlos Álvarez-Bel & Javier Rodríguez-García & Guillermo Escrivá-Escrivá, 2020. "Impact of Electric Vehicle Charging Strategy on the Long-Term Planning of an Isolated Microgrid," Energies, MDPI, vol. 13(13), pages 1-18, July.
    9. Yadav, Monika & Pal, Nitai & Saini, Devender Kumar, 2021. "Resilient electrical distribution grid planning against seismic waves using distributed energy resources and sectionalizers: An Indian's urban grid case study," Renewable Energy, Elsevier, vol. 178(C), pages 241-259.
    10. Fabian Zuñiga-Cortes & Eduardo Caicedo-Bravo & Juan D. Garcia-Racines, 2023. "Reference Framework Based on a Two-Stage Strategy for Sizing and Operational Management in Electrical Microgrid Planning," Sustainability, MDPI, vol. 15(19), pages 1-27, October.
    11. Marinko Barukčić & Toni Varga & Tin Benšić & Vedrana Jerković Štil, 2022. "Optimal Allocation of Renewable Energy Sources and Battery Storage Systems Considering Energy Management System Optimization Based on Fuzzy Inference," Energies, MDPI, vol. 15(19), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Licheng & Yan, Ruifeng & Saha, Tapan Kumar, 2019. "Voltage regulation challenges with unbalanced PV integration in low voltage distribution systems and the corresponding solution," Applied Energy, Elsevier, vol. 256(C).
    2. Li, Yinxiao & Wang, Yi & Chen, Qixin, 2020. "Study on the impacts of meteorological factors on distributed photovoltaic accommodation considering dynamic line parameters," Applied Energy, Elsevier, vol. 259(C).
    3. Mak, Davye & Choeum, Daranith & Choi, Dae-Hyun, 2020. "Sensitivity analysis of volt-VAR optimization to data changes in distribution networks with distributed energy resources," Applied Energy, Elsevier, vol. 261(C).
    4. Zheng, Guozhong & Wang, Xiao, 2020. "The comprehensive evaluation of renewable energy system schemes in tourist resorts based on VIKOR method," Energy, Elsevier, vol. 193(C).
    5. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    6. Rodríguez-Gallegos, Carlos D. & Vinayagam, Lokesh & Gandhi, Oktoviano & Yagli, Gokhan Mert & Alvarez-Alvarado, Manuel S. & Srinivasan, Dipti & Reindl, Thomas & Panda, S.K., 2021. "Novel forecast-based dispatch strategy optimization for PV hybrid systems in real time," Energy, Elsevier, vol. 222(C).
    7. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    8. Frate, Claudio Albuquerque & Brannstrom, Christian, 2017. "Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil," Energy Policy, Elsevier, vol. 111(C), pages 346-352.
    9. Jaszczur, Marek & Hassan, Qusay & Palej, Patryk & Abdulateef, Jasim, 2020. "Multi-Objective optimisation of a micro-grid hybrid power system for household application," Energy, Elsevier, vol. 202(C).
    10. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    11. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    12. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    13. Amro M Elshurafa & Abdel Rahman Muhsen, 2019. "The Upper Limit of Distributed Solar PV Capacity in Riyadh: A GIS-Assisted Study," Sustainability, MDPI, vol. 11(16), pages 1-20, August.
    14. Vladimir Z. Gjorgievski & Nikolas G. Chatzigeorgiou & Venizelos Venizelou & Georgios C. Christoforidis & George E. Georghiou & Grigoris K. Papagiannis, 2020. "Evaluation of Load Matching Indicators in Residential PV Systems-the Case of Cyprus," Energies, MDPI, vol. 13(8), pages 1-18, April.
    15. Yao Qian & Lang Sun & Quanyi Qiu & Lina Tang & Xiaoqi Shang & Chengxiu Lu, 2020. "Analysis of CO 2 Drivers and Emissions Forecast in a Typical Industry-Oriented County: Changxing County, China," Energies, MDPI, vol. 13(5), pages 1-21, March.
    16. Ioannis E. Kosmadakis & Costas Elmasides, 2021. "A Sizing Method for PV–Battery–Generator Systems for Off-Grid Applications Based on the LCOE," Energies, MDPI, vol. 14(7), pages 1-29, April.
    17. Yin, Linfei & Wang, Tao & Zheng, Baomin, 2021. "Analytical adaptive distributed multi-objective optimization algorithm for optimal power flow problems," Energy, Elsevier, vol. 216(C).
    18. Muttqi, Kashem M. & Aghaei, Jamshid & Askarpour, Mohammad & Ganapathy, Velappa, 2017. "Minimizing the steady-state impediments to solar photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1329-1345.
    19. Luis Rivera-González & David Bolonio & Luis F. Mazadiego & Robert Valencia-Chapi, 2019. "Long-Term Electricity Supply and Demand Forecast (2018–2040): A LEAP Model Application towards a Sustainable Power Generation System in Ecuador," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    20. Luo, Lizi & Gu, Wei & Wu, Zhi & Zhou, Suyang, 2019. "Joint planning of distributed generation and electric vehicle charging stations considering real-time charging navigation," Applied Energy, Elsevier, vol. 242(C), pages 1274-1284.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220301183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.