Numerical investigation and optimization of a proposed heat-driven compression/absorption hybrid refrigeration system combined with a power cycle
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.123199
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sujatha, I. & Venkatarathnam, G., 2017. "Performance of a vapour absorption heat transformer operating with ionic liquids and ammonia," Energy, Elsevier, vol. 141(C), pages 924-936.
- Dong, Li & Zheng, Danxing & Nie, Nan & Li, Yun, 2012. "Performance prediction of absorption refrigeration cycle based on the measurements of vapor pressure and heat capacity of H2O+[DMIM]DMP system," Applied Energy, Elsevier, vol. 98(C), pages 326-332.
- Han, Wei & Sun, Liuli & Zheng, Danxing & Jin, Hongguang & Ma, Sijun & Jing, Xuye, 2013. "New hybrid absorption–compression refrigeration system based on cascade use of mid-temperature waste heat," Applied Energy, Elsevier, vol. 106(C), pages 383-390.
- Chen, Yi & Han, Wei & Jin, Hongguang, 2017. "Proposal and analysis of a novel heat-driven absorption–compression refrigeration system at low temperatures," Applied Energy, Elsevier, vol. 185(P2), pages 2106-2116.
- Zhang, Xiao & Cai, Liang & Chen, Tao & Qiao, Jingyi & Zhang, Xiaosong, 2021. "Vapor-liquid equilibrium measurements and assessments of Low-GWP absorption working pairs (R32+DMETEG, R152a+DMETEG, and R161+DMETEG) for absorption refrigeration systems," Energy, Elsevier, vol. 224(C).
- Moreno, Daniel & Ferro, Víctor R. & de Riva, Juan & Santiago, Rubén & Moya, Cristian & Larriba, Marcos & Palomar, José, 2018. "Absorption refrigeration cycles based on ionic liquids: Refrigerant/absorbent selection by thermodynamic and process analysis," Applied Energy, Elsevier, vol. 213(C), pages 179-194.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhou, Xinpei & Chen, Wei & Zhang, Bin, 2022. "Proposed hybrid system with integrated SOFC, gas turbine, and compressor-assisted absorption refrigerator using [mmim]DMP/CH3OH as working fluid," Energy, Elsevier, vol. 261(PB).
- Mendiburu, Andrés Z. & Roberts, Justo J. & Rodrigues, Letícia Jenisch & Verma, Sujit Kr, 2023. "Thermodynamic modelling for absorption refrigeration cycles powered by solar energy and a case study for Porto Alegre, Brazil," Energy, Elsevier, vol. 266(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Xiao & Cai, Liang & Chen, Tao & Liu, Jian & Zhang, Xiaosong, 2023. "Thermodynamic screening and analysis of ionic liquids as absorbents paired with low-GWP refrigerants in absorption refrigeration systems," Energy, Elsevier, vol. 282(C).
- Luo, Chunhuan & Wang, Yanan & Li, Yiqun & Wu, Yongjian & Su, Qingquan & Hu, Tianyu, 2019. "Thermodynamic properties and application of LiNO3-[MMIM][DMP]/H2O ternary working pair," Renewable Energy, Elsevier, vol. 134(C), pages 147-160.
- Chen, Wei & Xu, Chenbin & Wu, Haibo & Bai, Yang & Li, Zoulu & Zhang, Bin, 2020. "Energy and exergy analyses of a novel hybrid system consisting of a phosphoric acid fuel cell and a triple-effect compression–absorption refrigerator with [mmim]DMP/CH3OH as working fluid," Energy, Elsevier, vol. 195(C).
- Muhsin Kılıç, 2022. "Evaluation of Combined Thermal–Mechanical Compression Systems: A Review for Energy Efficient Sustainable Cooling," Sustainability, MDPI, vol. 14(21), pages 1-38, October.
- Sui, Yunren & Wu, Wei, 2023. "Ionic liquid screening and performance optimization of transcritical carbon dioxide absorption heat pump enhanced by expander," Energy, Elsevier, vol. 263(PA).
- Bao, Yangzheng & Zhong, Yongbin & Yang, Jin & Tang, Siyang & Zhong, Shan & Feng, Wenqian & Ji, Junyi & Li, Hongjiao & Liang, Bin, 2024. "Novel working fluid pair of methanol/betaine-urea for absorption refrigeration system driven by low-temperature heat sources," Energy, Elsevier, vol. 298(C).
- Wang, Meng & Infante Ferreira, Carlos A., 2017. "Absorption heat pump cycles with NH3 – ionic liquid working pairs," Applied Energy, Elsevier, vol. 204(C), pages 819-830.
- Kadam, Sambhaji T. & Gkouletsos, Dimitris & Hassan, Ibrahim & Rahman, Mohammad Azizur & Kyriakides, Alexios-Spyridon & Papadopoulos, Athanasios I. & Seferlis, Panos, 2020. "Investigation of binary, ternary and quaternary mixtures across solution heat exchanger used in absorption refrigeration and process modifications to improve cycle performance," Energy, Elsevier, vol. 198(C).
- Yang, Junqin & Zhao, Hui & Li, Chenchen & Li, Xiuwei, 2021. "A direct energy reuse strategy for absorption air-conditioning system based on electrode regeneration method," Renewable Energy, Elsevier, vol. 168(C), pages 353-364.
- Jeon, Yongseok & Kim, Sunjae & Kim, Dongwoo & Chung, Hyun Joon & Kim, Yongchan, 2017. "Performance characteristics of an R600a household refrigeration cycle with a modified two-phase ejector for various ejector geometries and operating conditions," Applied Energy, Elsevier, vol. 205(C), pages 1059-1067.
- Min, Haye & Choi, Hyung Won & Jeong, Jaehui & Jeong, Jinhee & Kim, Young & Kang, Yong Tae, 2023. "Daily sorption thermal battery cycle for building applications," Energy, Elsevier, vol. 282(C).
- Mu, Chenlu & Ding, Tao & Qu, Ming & Zhou, Quan & Li, Fangxing & Shahidehpour, Mohammad, 2020. "Decentralized optimization operation for the multiple integrated energy systems with energy cascade utilization," Applied Energy, Elsevier, vol. 280(C).
- Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
- Kang, Shushuo & Li, Hongqiang & Lei, Jing & Liu, Lifang & Cai, Bo & Zhang, Guoqiang, 2015. "A new utilization approach of the waste heat with mid-low temperature in the combined heating and power system integrating heat pump," Applied Energy, Elsevier, vol. 160(C), pages 185-193.
- Chugh, Devesh & Gluesenkamp, Kyle R. & Abu-Heiba, Ahmad & Alipanah, Morteza & Fazeli, Abdy & Rode, Richard & Schmid, Michael & Patel, Viral K. & Moghaddam, Saeed, 2019. "Experimental evaluation of a semi-open membrane-based absorption heat pump system utilizing ionic liquids," Applied Energy, Elsevier, vol. 239(C), pages 919-927.
- Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
- Chen, Wei & Bai, Yang, 2016. "Thermal performance of an absorption-refrigeration system with [emim]Cu2Cl5/NH3 as working fluid," Energy, Elsevier, vol. 112(C), pages 332-341.
- Kühn, Roland & Meyer, Thomas & Ziegler, Felix, 2020. "Experimental investigation of ionic liquids as substitute for lithium bromide in water absorption chillers," Energy, Elsevier, vol. 205(C).
- Wu, Wei & Zhai, Chong & Huang, Si-Min & Sui, Yunren & Sui, Zengguang & Ding, Zhixiong, 2022. "A hybrid H2O/IL absorption and CO2 compression air-source heat pump for ultra-low ambient temperatures," Energy, Elsevier, vol. 239(PB).
More about this item
Keywords
Compression/absorption hybrid refrigeration; Heat-driven turbine; [Bmim]Zn2Cl5/NH3; Parameters optimization;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222001025. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.