IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics036054422301808x.html
   My bibliography  Save this article

Thermodynamic screening and analysis of ionic liquids as absorbents paired with low-GWP refrigerants in absorption refrigeration systems

Author

Listed:
  • Zhang, Xiao
  • Cai, Liang
  • Chen, Tao
  • Liu, Jian
  • Zhang, Xiaosong

Abstract

The combined use of low-GWP refrigerant/ionic liquid (ILs) binary mixtures and their applicable low-pressure compression-assisted absorption refrigeration system (LCARS) could compensate for drawbacks of traditional mixtures. A verified methodology for predicting macroscopic properties based on microchemical structures was thus established for systematic IL screening from a big database of 12080 ILs and 6 HFCs or HFOs and for thermodynamic analysis in systems. Molecular simulation studied the intermolecular characters and absorption affinity, revealing the effects of ions on solubility and the molecular design tendency of ILs for each refrigerant. IL screening was conducted by sequential selection of melting point, viscosity, solubility, and COP. The cations of ammonium, phosphonium, and guanidinium families and the anions of phosphate, phosphinate, sulfate, imide, and carboxylate types, have the relatively stronger affinity with refrigerants. Among ultimately selected 6 mixtures, R134a- and R32-based ones even have stronger affinity relative to traditional mixtures. The auxiliary compression assistance of LCARS reduced optimal generation temperatures and minimum evaporation temperatures while with significantly improved COPs, indicating its superiority for utilization of lower-grade heat sources and for expansion of application occasions. Optimized R152a/[C3M5GU][DMP] verified highest feasibility in absorption systems, due to its high COPs (e.g., 0.571 in base case) and moderate low circulation ratios.

Suggested Citation

  • Zhang, Xiao & Cai, Liang & Chen, Tao & Liu, Jian & Zhang, Xiaosong, 2023. "Thermodynamic screening and analysis of ionic liquids as absorbents paired with low-GWP refrigerants in absorption refrigeration systems," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s036054422301808x
    DOI: 10.1016/j.energy.2023.128414
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422301808X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128414?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruiz, E. & Ferro, V.R. & de Riva, J. & Moreno, D. & Palomar, J., 2014. "Evaluation of ionic liquids as absorbents for ammonia absorption refrigeration cycles using COSMO-based process simulations," Applied Energy, Elsevier, vol. 123(C), pages 281-291.
    2. Sujatha, I. & Venkatarathnam, G., 2017. "Performance of a vapour absorption heat transformer operating with ionic liquids and ammonia," Energy, Elsevier, vol. 141(C), pages 924-936.
    3. Jianbo, Li & Shiming, Xu & Xiangqiang, Kong & Kai, Liu & Fulin, Cui, 2019. "Experimental study on absorption/compression hybrid refrigeration cycle," Energy, Elsevier, vol. 168(C), pages 1237-1245.
    4. Wang, Meng & Infante Ferreira, Carlos A., 2017. "Absorption heat pump cycles with NH3 – ionic liquid working pairs," Applied Energy, Elsevier, vol. 204(C), pages 819-830.
    5. Zhang, Xiao & Cai, Liang & Chen, Tao & Qiao, Jingyi & Zhang, Xiaosong, 2021. "Vapor-liquid equilibrium measurements and assessments of Low-GWP absorption working pairs (R32+DMETEG, R152a+DMETEG, and R161+DMETEG) for absorption refrigeration systems," Energy, Elsevier, vol. 224(C).
    6. Moreno, Daniel & Ferro, Víctor R. & de Riva, Juan & Santiago, Rubén & Moya, Cristian & Larriba, Marcos & Palomar, José, 2018. "Absorption refrigeration cycles based on ionic liquids: Refrigerant/absorbent selection by thermodynamic and process analysis," Applied Energy, Elsevier, vol. 213(C), pages 179-194.
    7. Chen, Wei & Bai, Yang, 2016. "Thermal performance of an absorption-refrigeration system with [emim]Cu2Cl5/NH3 as working fluid," Energy, Elsevier, vol. 112(C), pages 332-341.
    8. Mansouri, Rami & Boukholda, Ismail & Bourouis, Mahmoud & Bellagi, Ahmed, 2015. "Modelling and testing the performance of a commercial ammonia/water absorption chiller using Aspen-Plus platform," Energy, Elsevier, vol. 93(P2), pages 2374-2383.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Chen & Hao, Xu & Tianjiao, Bi & Bin, Zhang & Yan, He, 2022. "Numerical investigation and optimization of a proposed heat-driven compression/absorption hybrid refrigeration system combined with a power cycle," Energy, Elsevier, vol. 246(C).
    2. Sui, Yunren & Wu, Wei, 2023. "Ionic liquid screening and performance optimization of transcritical carbon dioxide absorption heat pump enhanced by expander," Energy, Elsevier, vol. 263(PA).
    3. Kadam, Sambhaji T. & Gkouletsos, Dimitris & Hassan, Ibrahim & Rahman, Mohammad Azizur & Kyriakides, Alexios-Spyridon & Papadopoulos, Athanasios I. & Seferlis, Panos, 2020. "Investigation of binary, ternary and quaternary mixtures across solution heat exchanger used in absorption refrigeration and process modifications to improve cycle performance," Energy, Elsevier, vol. 198(C).
    4. Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
    5. Zhang, Xiao & Cai, Liang & Chen, Tao & Qiao, Jingyi & Zhang, Xiaosong, 2021. "Vapor-liquid equilibrium measurements and assessments of Low-GWP absorption working pairs (R32+DMETEG, R152a+DMETEG, and R161+DMETEG) for absorption refrigeration systems," Energy, Elsevier, vol. 224(C).
    6. Chen, Wei & Xu, Chenbin & Wu, Haibo & Bai, Yang & Li, Zoulu & Zhang, Bin, 2020. "Energy and exergy analyses of a novel hybrid system consisting of a phosphoric acid fuel cell and a triple-effect compression–absorption refrigerator with [mmim]DMP/CH3OH as working fluid," Energy, Elsevier, vol. 195(C).
    7. Moreno, Daniel & Ferro, Víctor R. & de Riva, Juan & Santiago, Rubén & Moya, Cristian & Larriba, Marcos & Palomar, José, 2018. "Absorption refrigeration cycles based on ionic liquids: Refrigerant/absorbent selection by thermodynamic and process analysis," Applied Energy, Elsevier, vol. 213(C), pages 179-194.
    8. Bao, Yangzheng & Zhong, Yongbin & Yang, Jin & Tang, Siyang & Zhong, Shan & Feng, Wenqian & Ji, Junyi & Li, Hongjiao & Liang, Bin, 2024. "Novel working fluid pair of methanol/betaine-urea for absorption refrigeration system driven by low-temperature heat sources," Energy, Elsevier, vol. 298(C).
    9. Li Yang & Yunfeng Ren & Zhihua Wang & Zhouming Hang & Yunxia Luo, 2021. "Simulation and Economic Research of Circulating Cooling Water Waste Heat and Water Resource Recovery System," Energies, MDPI, vol. 14(9), pages 1-13, April.
    10. Wang, Meng & Infante Ferreira, Carlos A., 2017. "Absorption heat pump cycles with NH3 – ionic liquid working pairs," Applied Energy, Elsevier, vol. 204(C), pages 819-830.
    11. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    12. Najjaran, Ahmad & Freeman, James & Ramos, Alba & Markides, Christos N., 2019. "Experimental investigation of an ammonia-water-hydrogen diffusion absorption refrigerator," Applied Energy, Elsevier, vol. 256(C).
    13. Chugh, Devesh & Gluesenkamp, Kyle & Abdelaziz, Omar & Moghaddam, Saeed, 2017. "Ionic liquid-based hybrid absorption cycle for water heating, dehumidification, and cooling," Applied Energy, Elsevier, vol. 202(C), pages 746-754.
    14. Jian Sun & Yinwu Wang & Yu Qin & Guoshun Wang & Ran Liu & Yongping Yang, 2023. "A Review of Super-High-Temperature Heat Pumps over 100 °C," Energies, MDPI, vol. 16(12), pages 1-18, June.
    15. Li, Xiaodong & Jinxi, Wang, 2023. "A novel process for the simultaneous production of methanol, oxygen, and electricity using a PEM electrolyzer and agricultural-based landfill gas-fed oxyfuel combustion power plant," Energy, Elsevier, vol. 284(C).
    16. Lisong Wang & Lijuan He & Yijian He, 2024. "Review on Absorption Refrigeration Technology and Its Potential in Energy-Saving and Carbon Emission Reduction in Natural Gas and Hydrogen Liquefaction," Energies, MDPI, vol. 17(14), pages 1-51, July.
    17. Chugh, Devesh & Gluesenkamp, Kyle R. & Abu-Heiba, Ahmad & Alipanah, Morteza & Fazeli, Abdy & Rode, Richard & Schmid, Michael & Patel, Viral K. & Moghaddam, Saeed, 2019. "Experimental evaluation of a semi-open membrane-based absorption heat pump system utilizing ionic liquids," Applied Energy, Elsevier, vol. 239(C), pages 919-927.
    18. Zhou, Xinpei & Chen, Wei & Zhang, Bin, 2022. "Proposed hybrid system with integrated SOFC, gas turbine, and compressor-assisted absorption refrigerator using [mmim]DMP/CH3OH as working fluid," Energy, Elsevier, vol. 261(PB).
    19. Luo, Chunhuan & Wang, Yanan & Li, Yiqun & Wu, Yongjian & Su, Qingquan & Hu, Tianyu, 2019. "Thermodynamic properties and application of LiNO3-[MMIM][DMP]/H2O ternary working pair," Renewable Energy, Elsevier, vol. 134(C), pages 147-160.
    20. Sehgal, Shitiz & Alvarado, Jorge L. & Hassan, Ibrahim G. & Kadam, Sambhaji T., 2021. "A comprehensive review of recent developments in falling-film, spray, bubble and microchannel absorbers for absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s036054422301808x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.