Review on Absorption Refrigeration Technology and Its Potential in Energy-Saving and Carbon Emission Reduction in Natural Gas and Hydrogen Liquefaction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Chen, Wei & Xu, Chenbin & Wu, Haibo & Bai, Yang & Li, Zoulu & Zhang, Bin, 2020. "Energy and exergy analyses of a novel hybrid system consisting of a phosphoric acid fuel cell and a triple-effect compression–absorption refrigerator with [mmim]DMP/CH3OH as working fluid," Energy, Elsevier, vol. 195(C).
- Zhai, Chong & Wu, Wei & Coronas, Alberto, 2021. "Membrane-based absorption cooling and heating: Development and perspectives," Renewable Energy, Elsevier, vol. 177(C), pages 663-688.
- Fengyuan Yan & Jinliang Geng & Guangxin Rong & Heng Sun & Lei Zhang & Jinxu Li, 2023. "Optimization and Analysis of an Integrated Liquefaction Process for Hydrogen and Natural Gas Utilizing Mixed Refrigerant Pre-Cooling," Energies, MDPI, vol. 16(10), pages 1-18, May.
- Wang, Meng & Infante Ferreira, Carlos A., 2017. "Absorption heat pump cycles with NH3 – ionic liquid working pairs," Applied Energy, Elsevier, vol. 204(C), pages 819-830.
- Rameshkumar, A. & Udayakumar, M. & Saravanan, R., 2009. "Heat transfer studies on a GAXAC (generator-absorber-exchange absorption compression) cooler," Applied Energy, Elsevier, vol. 86(10), pages 2056-2064, October.
- Garousi Farshi, L. & Mahmoudi, S.M.S. & Rosen, M.A., 2013. "Exergoeconomic comparison of double effect and combined ejector-double effect absorption refrigeration systems," Applied Energy, Elsevier, vol. 103(C), pages 700-711.
- Hu, Zheng & Wan, Yueru & Zhang, Chengbin & Chen, Yongping, 2022. "Compression-assisted absorption refrigeration using ocean thermal energy," Renewable Energy, Elsevier, vol. 186(C), pages 755-768.
- Kyriakides, Alexios-Spyridon & Papadopoulos, Athanasios I. & Seferlis, Panos & Hassan, Ibrahim, 2020. "Dynamic modelling and control of single, double and triple effect absorption refrigeration cycles," Energy, Elsevier, vol. 210(C).
- Mehrpooya, Mehdi & Moftakhari Sharifzadeh, Mohammad Mehdi & Rosen, Marc A., 2016. "Energy and exergy analyses of a novel power cycle using the cold of LNG (liquefied natural gas) and low-temperature solar energy," Energy, Elsevier, vol. 95(C), pages 324-345.
- Zhai, Chong & Wu, Wei, 2023. "Experimental parameter study and correlation development of microchannel membrane-based absorption process for efficient thermal cooling with high compactness," Energy, Elsevier, vol. 279(C).
- Medrano, M. & Bourouis, M. & Coronas, A., 2001. "Double-lift absorption refrigeration cycles driven by low-temperature heat sources using organic fluid mixtures as working pairs," Applied Energy, Elsevier, vol. 68(2), pages 173-185, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
- Yiqun Li & Na Li & Chunhuan Luo & Qingquan Su, 2019. "Thermodynamic Performance of a Double-Effect Absorption Refrigeration Cycle Based on a Ternary Working Pair: Lithium Bromide + Ionic Liquids + Water," Energies, MDPI, vol. 12(21), pages 1-21, November.
- Li, Deming & Deng, Zilong & Zhang, Chengbin, 2024. "Thermodynamic process control of compression-assisted absorption refrigeration using ocean thermal energy," Renewable Energy, Elsevier, vol. 222(C).
- Ji, Qiang & Wang, Yikai & Yin, Yonggao & Wang, Mu & Che, Chunwen & Cao, Bowen & Chen, Wanhe, 2023. "Cooling performance of compression-absorption cascade system with novel ternary ionic-liquid working pair," Energy, Elsevier, vol. 278(PB).
- Wu, Wei & Shi, Wenxing & Wang, Jian & Wang, Baolong & Li, Xianting, 2016. "Experimental investigation on NH3–H2O compression-assisted absorption heat pump (CAHP) for low temperature heating under lower driving sources," Applied Energy, Elsevier, vol. 176(C), pages 258-271.
- Ebrahimi, Armin & Ghorbani, Bahram & Ziabasharhagh, Masoud, 2020. "Introducing a novel integrated cogeneration system of power and cooling using stored liquefied natural gas as a cryogenic energy storage system," Energy, Elsevier, vol. 206(C).
- Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
- Mortadi, M. & El Fadar, A. & Achkari Begdouri, O., 2024. "4E analysis of photovoltaic thermal collector-based tri-generation system with adsorption cooling: Annual simulation under Moroccan climate conditions," Renewable Energy, Elsevier, vol. 221(C).
- Zhao, Yajing & Wang, Jiangfeng, 2016. "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied Energy, Elsevier, vol. 179(C), pages 159-170.
- Ghorbani, Bahram & Mehrpooya, Mehdi & Ghasemzadeh, Hossein, 2018. "Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process," Energy, Elsevier, vol. 158(C), pages 1105-1119.
- Sun, Zhixin & Xu, Fuquan & Wang, Shujia & Lai, Jianpeng & Lin, Kui, 2017. "Comparative study of Rankine cycle configurations utilizing LNG cold energy under different NG distribution pressures," Energy, Elsevier, vol. 139(C), pages 380-393.
- Wang, Meng & Infante Ferreira, Carlos A., 2017. "Absorption heat pump cycles with NH3 – ionic liquid working pairs," Applied Energy, Elsevier, vol. 204(C), pages 819-830.
- Athari, Hassan & Soltani, Saeed & Seyed Mahmoudi, Seyed Mohammad & Rosen, Marc A. & Morosuk, Tatiana, 2014. "Exergoeconomic analysis of a biomass post-firing combined-cycle power plant," Energy, Elsevier, vol. 77(C), pages 553-561.
- Kashish Kumar & Alok Singh, 2022. "Economic and Experimental Assessment of KCOOH Hybrid Liquid Desiccant-Vapor Compression System," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
- Le Lostec, Brice & Galanis, Nicolas & Baribeault, Jean & Millette, Jocelyn, 2008. "Wood chip drying with an absorption heat pump," Energy, Elsevier, vol. 33(3), pages 500-512.
- Zhai, Chong & Wu, Wei, 2023. "Experimental parameter study and correlation development of microchannel membrane-based absorption process for efficient thermal cooling with high compactness," Energy, Elsevier, vol. 279(C).
- Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
- Mehrpooya, Mehdi & Sharifzadeh, Mohammad Mehdi Moftakhari, 2017. "Conceptual and basic design of a novel integrated cogeneration power plant energy system," Energy, Elsevier, vol. 127(C), pages 516-533.
- Mehrpooya, Mehdi & Shahsavan, Mohsen & Sharifzadeh, Mohammad Mehdi Moftakhari, 2016. "Modeling, energy and exergy analysis of solar chimney power plant-Tehran climate data case study," Energy, Elsevier, vol. 115(P1), pages 257-273.
- Janghorban Esfahani, Iman & Kang, Yong Tae & Yoo, ChangKyoo, 2014. "A high efficient combined multi-effect evaporation–absorption heat pump and vapor-compression refrigeration part 1: Energy and economic modeling and analysis," Energy, Elsevier, vol. 75(C), pages 312-326.
More about this item
Keywords
absorption refrigeration; liquefaction process; natural gas; hydrogen; carbon emission reduction; energy-saving;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3427-:d:1433546. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.