IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v194y2020ics0360544219325599.html
   My bibliography  Save this article

Influence of stall fences on the performance of Wells turbine

Author

Listed:
  • Das, Tapas K.
  • Samad, Abdus

Abstract

The Wells turbine is one of the candidates for use in Oscillating Water Column (OWC) type wave energy conversion devices. The narrow operating range of a Wells turbine limits its application to a small range of ocean environments. At a high angle of attack, the turbine performance drops suddenly due to a phenomenon known as stall. The present study introduces stall fences in the Wells turbine blade to postpone stall and widen the operating range. The stall fences are defined by the length, height, and thickness in percentage of blade chord length. For the present study, dimensions of the stall fences are determined by using a surrogate-based optimization technique. The modified and reference turbine are numerically studied by solving the Reynolds-Averaged-Navier-Stokes equations in the commercial CFD software ANSYS CFX 16.1. The comparison of fenced turbine with reference turbine shows 16.6% improvement in operating range at the cost of peak torque developed by the turbine. The peak-to-average power ratio in the stall-free range is reduced by 16.7% when stall fences are used. The change in internal flow due to the presence of stall fences is analyzed in detail in the present work.

Suggested Citation

  • Das, Tapas K. & Samad, Abdus, 2020. "Influence of stall fences on the performance of Wells turbine," Energy, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544219325599
    DOI: 10.1016/j.energy.2019.116864
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219325599
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116864?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Falcão, António F.O. & Henriques, João C.C., 2016. "Oscillating-water-column wave energy converters and air turbines: A review," Renewable Energy, Elsevier, vol. 85(C), pages 1391-1424.
    2. Torresi, M. & Camporeale, S.M. & Strippoli, P.D. & Pascazio, G., 2008. "Accurate numerical simulation of a high solidity Wells turbine," Renewable Energy, Elsevier, vol. 33(4), pages 735-747.
    3. Halder, Paresh & Samad, Abdus & Kim, Jin-Hyuk & Choi, Young-Seok, 2015. "High performance ocean energy harvesting turbine design–A new casing treatment scheme," Energy, Elsevier, vol. 86(C), pages 219-231.
    4. Halder, Paresh & Samad, Abdus & Thévenin, Dominique, 2017. "Improved design of a Wells turbine for higher operating range," Renewable Energy, Elsevier, vol. 106(C), pages 122-134.
    5. Setoguchi, T & Santhakumar, S & Takao, M & Kim, T.H & Kaneko, K, 2001. "Effect of guide vane shape on the performance of a Wells turbine," Renewable Energy, Elsevier, vol. 23(1), pages 1-15.
    6. Henriques, J.C.C. & Gato, L.M.C. & Lemos, J.M. & Gomes, R.P.F. & Falcão, A.F.O., 2016. "Peak-power control of a grid-integrated oscillating water column wave energy converter," Energy, Elsevier, vol. 109(C), pages 378-390.
    7. Mohamed, M.H. & Janiga, G. & Pap, E. & Thévenin, D., 2011. "Multi-objective optimization of the airfoil shape of Wells turbine used for wave energy conversion," Energy, Elsevier, vol. 36(1), pages 438-446.
    8. Gharali, Kobra & Johnson, David A., 2012. "Numerical modeling of an S809 airfoil under dynamic stall, erosion and high reduced frequencies," Applied Energy, Elsevier, vol. 93(C), pages 45-52.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Nasim Uddin & Michael Atkinson & Frimpong Opoku, 2023. "CFD Investigation of a Hybrid Wells Turbine with Passive Flow Control," Energies, MDPI, vol. 16(9), pages 1-28, April.
    2. Valizadeh, Reza & Abbaspour, Madjid & Rahni, Mohammad Taeibi, 2020. "A low cost Hydrokinetic Wells turbine system for oceanic surface waves energy harvesting," Renewable Energy, Elsevier, vol. 156(C), pages 610-623.
    3. Geng, Kaihe & Yang, Ce & Zhao, Ben & Zhao, Wei & Gao, Jianbing & Hu, Chenxing & Zhang, Hanzhi & Wu, Wangxia, 2023. "Residual circulation budget analysis in a Wells turbine with leading-edge micro-cylinders," Renewable Energy, Elsevier, vol. 216(C).
    4. Liu, Zhen & Xu, Chuanli & Zhang, Xiaoxia & Ning, Dezhi, 2023. "Experimental study on an isolated oscillating water column wave energy converting device in oblique waves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Kotb, Ahmed T.M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2023. "Performance enhancement of a Wells turbine using CFD-optimization algorithms coupling," Energy, Elsevier, vol. 282(C).
    6. Liu, Zhen & Xu, Chuanli & Kim, Kilwon & Li, Ming, 2022. "Experimental study on the overall performance of a model OWC system under the free-spinning mode in irregular waves," Energy, Elsevier, vol. 250(C).
    7. Mustafa Özden & Mustafa Serdar Genç & Kemal Koca, 2023. "Passive Flow Control Application Using Single and Double Vortex Generator on S809 Wind Turbine Airfoil," Energies, MDPI, vol. 16(14), pages 1-17, July.
    8. Licheri, Fabio & Ghisu, Tiziano & Cambuli, Francesco & Puddu, Pierpaolo, 2024. "Experimental reconstruction of the local flow field in a Wells turbine using a three-dimensional pressure probe," Energy, Elsevier, vol. 296(C).
    9. Liu, Zhen & Xu, Chuanli & Kim, Kilwon & Choi, Jongsu & Hyun, Beom-soo, 2021. "An integrated numerical model for the chamber-turbine system of an oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Geng, Kaihe & Yang, Ce & Hu, Chenxing & Li, Yanzhao & Yang, Changmao, 2022. "Numerical investigation on the loss audit of Wells turbine with exergy analysis," Renewable Energy, Elsevier, vol. 189(C), pages 273-287.
    11. Morais, F.J.F. & Carrelhas, A.A.D. & Gato, L.M.C., 2023. "Biplane-rotor Wells turbine: The influence of solidity, presence of guide vanes and comparison with other configurations," Energy, Elsevier, vol. 276(C).
    12. Ardaneh, Fatemeh & Abdolahifar, Abolfazl & Karimian, S.M.H., 2022. "Numerical analysis of the pitch angle effect on the performance improvement and flow characteristics of the 3-PB Darrieus vertical axis wind turbine," Energy, Elsevier, vol. 239(PD).
    13. Kotb, Ahmed T.M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2024. "Impact of tapered leading-edge micro-cylinder on the performance of wells turbine for wave energy conversion: CFD-optimization algorithms coupling study," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paresh Halder & Hideki Takebe & Krisna Pawitan & Jun Fujita & Shuji Misumi & Tsumoru Shintake, 2020. "Turbine Characteristics of Wave Energy Conversion Device for Extraction Power Using Breaking Waves," Energies, MDPI, vol. 13(4), pages 1-17, February.
    2. Halder, Paresh & Samad, Abdus & Thévenin, Dominique, 2017. "Improved design of a Wells turbine for higher operating range," Renewable Energy, Elsevier, vol. 106(C), pages 122-134.
    3. Kotb, Ahmed T.M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2023. "Performance enhancement of a Wells turbine using CFD-optimization algorithms coupling," Energy, Elsevier, vol. 282(C).
    4. Kotb, Ahmed T.M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2022. "Performance assessment of a modified wells turbine using an integrated casing groove and Gurney flap design for wave energy conversion," Renewable Energy, Elsevier, vol. 197(C), pages 627-642.
    5. Kotb, Ahmed T.M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2024. "Impact of tapered leading-edge micro-cylinder on the performance of wells turbine for wave energy conversion: CFD-optimization algorithms coupling study," Energy, Elsevier, vol. 293(C).
    6. Mohamed, M.H. & Shaaban, S., 2013. "Optimization of blade pitch angle of an axial turbine used for wave energy conversion," Energy, Elsevier, vol. 56(C), pages 229-239.
    7. Ansarifard, Nazanin & Kianejad, S.S. & Fleming, Alan & Henderson, Alan & Chai, Shuhong, 2020. "Design optimization of a purely radial turbine for operation in the inhalation mode of an oscillating water column," Renewable Energy, Elsevier, vol. 152(C), pages 540-556.
    8. Abdullah Saad Alkhalifa & Mohammad Nasim Uddin & Michael Atkinson, 2022. "Aerodynamic Performance Analysis of Trailing Edge Serrations on a Wells Turbine," Energies, MDPI, vol. 15(23), pages 1-21, November.
    9. Nazeryan, Mohammad & Lakzian, Esmail, 2018. "Detailed entropy generation analysis of a Wells turbine using the variation of the blade thickness," Energy, Elsevier, vol. 143(C), pages 385-405.
    10. Geng, Kaihe & Yang, Ce & Zhao, Ben & Zhao, Wei & Gao, Jianbing & Hu, Chenxing & Zhang, Hanzhi & Wu, Wangxia, 2023. "Residual circulation budget analysis in a Wells turbine with leading-edge micro-cylinders," Renewable Energy, Elsevier, vol. 216(C).
    11. Geng, Kaihe & Yang, Ce & Hu, Chenxing & Li, Yanzhao & Yang, Changmao, 2022. "Numerical investigation on the loss audit of Wells turbine with exergy analysis," Renewable Energy, Elsevier, vol. 189(C), pages 273-287.
    12. Luana Gurnari & Pasquale G. F. Filianoti & Marco Torresi & Sergio M. Camporeale, 2020. "The Wave-to-Wire Energy Conversion Process for a Fixed U-OWC Device," Energies, MDPI, vol. 13(1), pages 1-25, January.
    13. Das, Tapas K. & Kumar, Kumud & Samad, Abdus, 2020. "Experimental Analysis of a Biplane Wells Turbine under Different Load Conditions," Energy, Elsevier, vol. 206(C).
    14. Correia da Fonseca, F.X. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2019. "Oscillating flow rig for air turbine testing," Renewable Energy, Elsevier, vol. 142(C), pages 373-382.
    15. Henriques, J.C.C. & Portillo, J.C.C. & Gato, L.M.C. & Gomes, R.P.F. & Ferreira, D.N. & Falcão, A.F.O., 2016. "Design of oscillating-water-column wave energy converters with an application to self-powered sensor buoys," Energy, Elsevier, vol. 112(C), pages 852-867.
    16. Lorenzo Ciappi & Lapo Cheli & Irene Simonetti & Alessandro Bianchini & Giampaolo Manfrida & Lorenzo Cappietti, 2020. "Wave-to-Wire Model of an Oscillating-Water-Column Wave Energy Converter and Its Application to Mediterranean Energy Hot-Spots," Energies, MDPI, vol. 13(21), pages 1-28, October.
    17. Halder, Paresh & Samad, Abdus & Kim, Jin-Hyuk & Choi, Young-Seok, 2015. "High performance ocean energy harvesting turbine design–A new casing treatment scheme," Energy, Elsevier, vol. 86(C), pages 219-231.
    18. Liu, Zhen & Cui, Ying & Li, Ming & Shi, Hongda, 2017. "Steady state performance of an axial impulse turbine for oscillating water column wave energy converters," Energy, Elsevier, vol. 141(C), pages 1-10.
    19. Valizadeh, Reza & Abbaspour, Madjid & Rahni, Mohammad Taeibi, 2020. "A low cost Hydrokinetic Wells turbine system for oceanic surface waves energy harvesting," Renewable Energy, Elsevier, vol. 156(C), pages 610-623.
    20. Liu, Zhen & Xu, Chuanli & Qu, Na & Cui, Ying & Kim, Kilwon, 2020. "Overall performance evaluation of a model-scale OWC wave energy converter," Renewable Energy, Elsevier, vol. 149(C), pages 1325-1338.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544219325599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.