IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3851-d1137268.html
   My bibliography  Save this article

CFD Investigation of a Hybrid Wells Turbine with Passive Flow Control

Author

Listed:
  • Mohammad Nasim Uddin

    (Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA)

  • Michael Atkinson

    (Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA)

  • Frimpong Opoku

    (Senior Structural Engineer, Collins Aerospace, 190 Oak Plaza Blvd, Winston-Salem, NC 27105, USA)

Abstract

In the past decade, there has been renewed interest in wave energy harvesting utilizing oscillating water columns (OWC), one of the most well-studied wave energy harnessing technologies. In the OWC, pneumatic power from ocean waves is converted to mechanical energy by Wells turbines. It should be noted, however, that such turbines tend to perform poorly, have a limited operating range, and have low efficiency. In the present study, we incorporate a rectangular Gurney flap (GF) at the trailing edge (TE) of a Wells turbine consisting of hybrid airfoil (NACA 0015 and NACA 0025) blades with variable chord distribution along the span. This passive flow control mechanism was adopted to achieve increased power production by the Wells turbine. This study aimed to determine the aerodynamic performance of the variable chord turbine with GF compared to a turbine with a constant chord. By using ANSYS™ CFX, the three-dimensional, steady-state, incompressible Reynolds averaged Navier–Stokes (RANS) equations coupled with the k-ω SST turbulence model are solved. The performance was evaluated through the use of non-dimensional coefficients of torque, pressure drop, and efficiency. In addition, the numerical accuracy was achieved through a grid independence study. There was a good agreement between the computed results and the available experimental and numerical data. The GF increased the torque coefficient by 18.6% and 47.3% but with the expense of peak efficiency of 8.5% and 7.4% for the baseline and the hybrid turbine, respectively. Additionally, the hybrid turbine with GF delayed the onset of the stall by ~3° angle of attack (AOA).

Suggested Citation

  • Mohammad Nasim Uddin & Michael Atkinson & Frimpong Opoku, 2023. "CFD Investigation of a Hybrid Wells Turbine with Passive Flow Control," Energies, MDPI, vol. 16(9), pages 1-28, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3851-:d:1137268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3851/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3851/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thakker, A. & Dhanasekaran, T.S., 2005. "Experimental and computational analysis on guide vane losses of impulse turbine for wave energy conversion," Renewable Energy, Elsevier, vol. 30(9), pages 1359-1372.
    2. Das, Tapas K. & Samad, Abdus, 2020. "Influence of stall fences on the performance of Wells turbine," Energy, Elsevier, vol. 194(C).
    3. Abdullah Saad Alkhalifa & Mohammad Nasim Uddin & Michael Atkinson, 2022. "Aerodynamic Performance Analysis of Trailing Edge Serrations on a Wells Turbine," Energies, MDPI, vol. 15(23), pages 1-21, November.
    4. Shehata, Ahmed S. & Saqr, Khalid M. & Xiao, Qing & Shehadeh, Mohamed F. & Day, Alexander, 2016. "Performance analysis of wells turbine blades using the entropy generation minimization method," Renewable Energy, Elsevier, vol. 86(C), pages 1123-1133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ru & Cui, Ying & Liu, Zhen & Li, Boyang & Zhang, Yongbo, 2024. "Numerical study on unsteady performance of a Wells turbine under irregular wave conditions," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhen & Cui, Ying & Li, Ming & Shi, Hongda, 2017. "Steady state performance of an axial impulse turbine for oscillating water column wave energy converters," Energy, Elsevier, vol. 141(C), pages 1-10.
    2. Wang, Ru & Cui, Ying & Liu, Zhen & Li, Boyang & Zhang, Yongbo, 2024. "Numerical study on unsteady performance of a Wells turbine under irregular wave conditions," Renewable Energy, Elsevier, vol. 225(C).
    3. Liu, Zhen & Xu, Chuanli & Kim, Kilwon & Choi, Jongsu & Hyun, Beom-soo, 2021. "An integrated numerical model for the chamber-turbine system of an oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Geng, Kaihe & Yang, Ce & Hu, Chenxing & Li, Yanzhao & Yang, Changmao, 2022. "Numerical investigation on the loss audit of Wells turbine with exergy analysis," Renewable Energy, Elsevier, vol. 189(C), pages 273-287.
    5. Ardaneh, Fatemeh & Abdolahifar, Abolfazl & Karimian, S.M.H., 2022. "Numerical analysis of the pitch angle effect on the performance improvement and flow characteristics of the 3-PB Darrieus vertical axis wind turbine," Energy, Elsevier, vol. 239(PD).
    6. Ghorani, Mohammad Mahdi & Sotoude Haghighi, Mohammad Hadi & Maleki, Ali & Riasi, Alireza, 2020. "A numerical study on mechanisms of energy dissipation in a pump as turbine (PAT) using entropy generation theory," Renewable Energy, Elsevier, vol. 162(C), pages 1036-1053.
    7. Shehata, Ahmed S. & Xiao, Qing & Selim, Mohamed M. & Elbatran, A.H. & Alexander, Day, 2017. "Enhancement of performance of wave turbine during stall using passive flow control: First and second law analysis," Renewable Energy, Elsevier, vol. 113(C), pages 369-392.
    8. Sotoude Haghighi, Mohammad Hadi & Mirghavami, Seyed Mohammad & Ghorani, Mohammad Mahdi & Riasi, Alireza & Chini, Seyed Farshid, 2020. "A numerical study on the performance of a superhydrophobic coated very low head (VLH) axial hydraulic turbine using entropy generation method," Renewable Energy, Elsevier, vol. 147(P1), pages 409-422.
    9. Ying, P. & Chen, Y.K. & Xu, Y.G. & Tian, Y., 2015. "Computational and experimental investigations of an omni-flow wind turbine," Applied Energy, Elsevier, vol. 146(C), pages 74-83.
    10. Kotb, Ahmed T.M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2023. "Performance enhancement of a Wells turbine using CFD-optimization algorithms coupling," Energy, Elsevier, vol. 282(C).
    11. Morais, F.J.F. & Carrelhas, A.A.D. & Gato, L.M.C., 2023. "Biplane-rotor Wells turbine: The influence of solidity, presence of guide vanes and comparison with other configurations," Energy, Elsevier, vol. 276(C).
    12. Han, Yadong & Liu, Yabin & Tan, Lei, 2022. "Method of variable-depth groove on vortex and cavitation suppression for a NACA0009 hydrofoil with tip clearance in tidal energy," Renewable Energy, Elsevier, vol. 199(C), pages 546-559.
    13. Nazeryan, Mohammad & Lakzian, Esmail, 2018. "Detailed entropy generation analysis of a Wells turbine using the variation of the blade thickness," Energy, Elsevier, vol. 143(C), pages 385-405.
    14. Badhurshah, Rameez & Samad, Abdus, 2015. "Multiple surrogate based optimization of a bidirectional impulse turbine for wave energy conversion," Renewable Energy, Elsevier, vol. 74(C), pages 749-760.
    15. Lund, H., 2006. "Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply," Renewable Energy, Elsevier, vol. 31(4), pages 503-515.
    16. Mustafa Özden & Mustafa Serdar Genç & Kemal Koca, 2023. "Passive Flow Control Application Using Single and Double Vortex Generator on S809 Wind Turbine Airfoil," Energies, MDPI, vol. 16(14), pages 1-17, July.
    17. Yongyao Luo & Alexandre Presas & Zhengwei Wang, 2019. "Numerical Analysis of the Influence of Design Parameters on the Efficiency of an OWC Axial Impulse Turbine for Wave Energy Conversion," Energies, MDPI, vol. 12(5), pages 1-12, March.
    18. Valizadeh, Reza & Abbaspour, Madjid & Rahni, Mohammad Taeibi, 2020. "A low cost Hydrokinetic Wells turbine system for oceanic surface waves energy harvesting," Renewable Energy, Elsevier, vol. 156(C), pages 610-623.
    19. Geng, Kaihe & Yang, Ce & Zhao, Ben & Zhao, Wei & Gao, Jianbing & Hu, Chenxing & Zhang, Hanzhi & Wu, Wangxia, 2023. "Residual circulation budget analysis in a Wells turbine with leading-edge micro-cylinders," Renewable Energy, Elsevier, vol. 216(C).
    20. Qi, Bing & Zhang, Desheng & Geng, Linlin & Zhao, Ruijie & van Esch, Bart P.M., 2022. "Numerical and experimental investigations on inflow loss in the energy recovery turbines with back-curved and front-curved impeller based on the entropy generation theory," Energy, Elsevier, vol. 239(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3851-:d:1137268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.