IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v296y2024ics036054422400834x.html
   My bibliography  Save this article

Experimental reconstruction of the local flow field in a Wells turbine using a three-dimensional pressure probe

Author

Listed:
  • Licheri, Fabio
  • Ghisu, Tiziano
  • Cambuli, Francesco
  • Puddu, Pierpaolo

Abstract

Among the various solutions suggested for wave energy harvesting, the ones based on the oscillating water column (OWC) principle are considered as the most promising, due to their constructive simplicity and reliability. These systems convert sea wave energy into pneumatic energy in the form of a bi-directional airflow that can conveniently turned into mechanical energy by a Wells turbine. Since their introduction, Wells turbines have been studied extensively in order to characterize their performance. Most of the experimental studies have focused on global machine performance analyses, while the studies focusing on local performance analyses are limited. This work presents a detailed experimental investigation of a small-scale Wells turbine coupled to an OWC simulator. The turbine aerodynamic characteristic has been identified with global measurements, while a miniaturized aerodynamic probe has been used to evaluate local performance, by reconstructing the three-dimensional flow field upstream and downstream of the turbine during a complete regular wave period. Local analyses aid to explain global turbine performance, highlighting the main differences between inflow and outflow phases. Moreover, they allow to describe the variation in loading along the blade radius, and to evaluate the blade design law, which justifies the limited Wells turbine aerodynamic performance.

Suggested Citation

  • Licheri, Fabio & Ghisu, Tiziano & Cambuli, Francesco & Puddu, Pierpaolo, 2024. "Experimental reconstruction of the local flow field in a Wells turbine using a three-dimensional pressure probe," Energy, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:energy:v:296:y:2024:i:c:s036054422400834x
    DOI: 10.1016/j.energy.2024.131062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422400834X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arinaga, Randi A. & Cheung, Kwok Fai, 2012. "Atlas of global wave energy from 10 years of reanalysis and hindcast data," Renewable Energy, Elsevier, vol. 39(1), pages 49-64.
    2. Licheri, Fabio & Ghisu, Tiziano & Cambuli, Francesco & Puddu, Pierpaolo, 2022. "Detailed investigation of the local flow-field in a Wells turbine coupled to an OWC simulator," Renewable Energy, Elsevier, vol. 197(C), pages 583-593.
    3. Stefanizzi, Michele & Camporeale, Sergio Mario & Torresi, Marco, 2023. "Experimental investigation of a Wells turbine under dynamic stall conditions for wave energy conversion," Renewable Energy, Elsevier, vol. 214(C), pages 369-382.
    4. Alves, João S. & Gato, Luís M.C. & Falcão, António F.O. & Henriques, João C.C., 2021. "Experimental investigation on performance improvement by mid-plane guide-vanes in a biplane-rotor Wells turbine for wave energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    6. Domenico Curto & Vincenzo Franzitta & Andrea Guercio, 2021. "Sea Wave Energy. A Review of the Current Technologies and Perspectives," Energies, MDPI, vol. 14(20), pages 1-31, October.
    7. Torresi, M. & Camporeale, S.M. & Strippoli, P.D. & Pascazio, G., 2008. "Accurate numerical simulation of a high solidity Wells turbine," Renewable Energy, Elsevier, vol. 33(4), pages 735-747.
    8. Paderi, Maurizio & Puddu, Pierpaolo, 2013. "Experimental investigation in a Wells turbine under bi-directional flow," Renewable Energy, Elsevier, vol. 57(C), pages 570-576.
    9. Nazeryan, Mohammad & Lakzian, Esmail, 2018. "Detailed entropy generation analysis of a Wells turbine using the variation of the blade thickness," Energy, Elsevier, vol. 143(C), pages 385-405.
    10. Das, Tapas K. & Samad, Abdus, 2020. "Influence of stall fences on the performance of Wells turbine," Energy, Elsevier, vol. 194(C).
    11. Das, Tapas K. & Kumar, Kumud & Samad, Abdus, 2020. "Experimental Analysis of a Biplane Wells Turbine under Different Load Conditions," Energy, Elsevier, vol. 206(C).
    12. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    13. Dhanasekaran, T.S. & Govardhan, M., 2005. "Computational analysis of performance and flow investigation on wells turbine for wave energy conversion," Renewable Energy, Elsevier, vol. 30(14), pages 2129-2147.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Licheri, Fabio & Ghisu, Tiziano & Cambuli, Francesco & Puddu, Pierpaolo, 2022. "Detailed investigation of the local flow-field in a Wells turbine coupled to an OWC simulator," Renewable Energy, Elsevier, vol. 197(C), pages 583-593.
    2. Geng, Kaihe & Yang, Ce & Hu, Chenxing & Li, Yanzhao & Yang, Changmao, 2022. "Numerical investigation on the loss audit of Wells turbine with exergy analysis," Renewable Energy, Elsevier, vol. 189(C), pages 273-287.
    3. Morais, F.J.F. & Carrelhas, A.A.D. & Gato, L.M.C., 2023. "Biplane-rotor Wells turbine: The influence of solidity, presence of guide vanes and comparison with other configurations," Energy, Elsevier, vol. 276(C).
    4. Wang, Ru & Cui, Ying & Liu, Zhen & Li, Boyang & Zhang, Yongbo, 2024. "Numerical study on unsteady performance of a Wells turbine under irregular wave conditions," Renewable Energy, Elsevier, vol. 225(C).
    5. Valizadeh, Reza & Abbaspour, Madjid & Rahni, Mohammad Taeibi, 2020. "A low cost Hydrokinetic Wells turbine system for oceanic surface waves energy harvesting," Renewable Energy, Elsevier, vol. 156(C), pages 610-623.
    6. Stefanizzi, Michele & Camporeale, Sergio Mario & Torresi, Marco, 2023. "Experimental investigation of a Wells turbine under dynamic stall conditions for wave energy conversion," Renewable Energy, Elsevier, vol. 214(C), pages 369-382.
    7. Muhammed Zafar Ali Khan & Haider Ali Khan & Muhammad Aziz, 2022. "Harvesting Energy from Ocean: Technologies and Perspectives," Energies, MDPI, vol. 15(9), pages 1-43, May.
    8. Nadège Bouchonneau & Arnaud Coutrey & Vivianne Marie Bruère & Moacyr Araújo & Alex Costa da Silva, 2023. "Finite Element Modeling and Simulation of a Submerged Wave Energy Converter System for Application to Oceanic Islands in Tropical Atlantic," Energies, MDPI, vol. 16(4), pages 1-17, February.
    9. Wanan Sheng & Hui Li & Jimmy Murphy, 2017. "An Improved Method for Energy and Resource Assessment of Waves in Finite Water Depths," Energies, MDPI, vol. 10(8), pages 1-17, August.
    10. Coe, Ryan G. & Bacelli, Giorgio & Forbush, Dominic, 2021. "A practical approach to wave energy modeling and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    11. Fadaeenejad, M. & Shamsipour, R. & Rokni, S.D. & Gomes, C., 2014. "New approaches in harnessing wave energy: With special attention to small islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 345-354.
    12. Bozzi, Silvia & Archetti, Renata & Passoni, Giuseppe, 2014. "Wave electricity production in Italian offshore: A preliminary investigation," Renewable Energy, Elsevier, vol. 62(C), pages 407-416.
    13. Shi, Xueli & Li, Shaowu & Liang, Bingchen & Zhao, Jianchun & Liu, Ye & Wang, Zhenlu, 2023. "Numerical study on the impact of wave-current interaction on wave energy resource assessments in Zhoushan sea area, China," Renewable Energy, Elsevier, vol. 215(C).
    14. Zheng, Chong-wei, 2021. "Global oceanic wave energy resource dataset—with the Maritime Silk Road as a case study," Renewable Energy, Elsevier, vol. 169(C), pages 843-854.
    15. Sierra, J.P. & González-Marco, D. & Sospedra, J. & Gironella, X. & Mösso, C. & Sánchez-Arcilla, A., 2013. "Wave energy resource assessment in Lanzarote (Spain)," Renewable Energy, Elsevier, vol. 55(C), pages 480-489.
    16. Scialò, A. & Henriques, J.C.C. & Malara, G. & Falcão, A.F.O. & Gato, L.M.C. & Arena, F., 2021. "Power take-off selection for a fixed U-OWC wave power plant in the Mediterranean Sea: The case of Roccella Jonica," Energy, Elsevier, vol. 215(PA).
    17. Beya, Ignacio & Buckham, Bradley & Robertson, Bryson, 2021. "Impact of tidal currents and model fidelity on wave energy resource assessments," Renewable Energy, Elsevier, vol. 176(C), pages 50-66.
    18. Shih-Chun Hsiao & Chao-Tzuen Cheng & Tzu-Yin Chang & Wei-Bo Chen & Han-Lun Wu & Jiun-Huei Jang & Lee-Yaw Lin, 2021. "Assessment of Offshore Wave Energy Resources in Taiwan Using Long-Term Dynamically Downscaled Winds from a Third-Generation Reanalysis Product," Energies, MDPI, vol. 14(3), pages 1-25, January.
    19. Kotb, Ahmed T.M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2023. "Performance enhancement of a Wells turbine using CFD-optimization algorithms coupling," Energy, Elsevier, vol. 282(C).
    20. Hung-Ju Shih & Chih-Hsin Chang & Wei-Bo Chen & Lee-Yaw Lin, 2018. "Identifying the Optimal Offshore Areas for Wave Energy Converter Deployments in Taiwanese Waters Based on 12-Year Model Hindcasts," Energies, MDPI, vol. 11(3), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s036054422400834x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.