IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v216y2021ics0360544220322179.html
   My bibliography  Save this article

Performance improvement of the biradial self-rectifying impulse air-turbine for wave energy conversion by multi-row guide vanes: Design and experimental results

Author

Listed:
  • Gato, L.M.C.
  • Maduro, A.R.
  • Carrelhas, A.A.D.
  • Henriques, J.C.C.
  • Ferreira, D.N.

Abstract

Self-rectifying impulse turbines are a popular alternative to the Wells turbine for oscillating-water-column wave energy converters. Self-rectifying impulse turbines have two sets of guide-vanes, one set placed symmetrically on each side of the rotor, instead of a single set as in unidirectional turbines. The efficiency of self-rectifying turbines with fixed guide-vanes is known to be severely affected by the large aerodynamic losses due to the inherent misalignment between the outflow from the rotor and the downstream guide-vanes. The biradial turbine is an advanced, more efficient, version of the impulse self-rectifying turbine, as compared with the conventional axial-flow type. The paper presents a new topology for the radially-set guide-vane system arranged into multiple, rather than simple, rows, aiming to increase the turbine efficiency by reducing the losses by aerodynamic outflow stalling at the exit guide-vane system while ensuring the required inflow deflection by the inlet guide vanes. The design method combines an evolutionary optimisation algorithm with cascade-flow CFD RANS calculations. Experimental results are presented to validate the design method and to assess the performance and flow-losses of the single and double-row guide-vane system configurations.

Suggested Citation

  • Gato, L.M.C. & Maduro, A.R. & Carrelhas, A.A.D. & Henriques, J.C.C. & Ferreira, D.N., 2021. "Performance improvement of the biradial self-rectifying impulse air-turbine for wave energy conversion by multi-row guide vanes: Design and experimental results," Energy, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:energy:v:216:y:2021:i:c:s0360544220322179
    DOI: 10.1016/j.energy.2020.119110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220322179
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. López, I. & Pereiras, B. & Castro, F. & Iglesias, G., 2016. "Holistic performance analysis and turbine-induced damping for an OWC wave energy converter," Renewable Energy, Elsevier, vol. 85(C), pages 1155-1163.
    2. Falcão, António F.O. & Henriques, João C.C., 2016. "Oscillating-water-column wave energy converters and air turbines: A review," Renewable Energy, Elsevier, vol. 85(C), pages 1391-1424.
    3. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O. & Varandas, J., 2019. "Test results of a 30 kW self-rectifying biradial air turbine-generator prototype," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 187-198.
    4. Pereiras, Bruno & López, Iván & Castro, Francisco & Iglesias, Gregorio, 2015. "Non-dimensional analysis for matching an impulse turbine to an OWC (oscillating water column) with an optimum energy transfer," Energy, Elsevier, vol. 87(C), pages 481-489.
    5. Jayashankar, V. & Anand, S. & Geetha, T. & Santhakumar, S. & Jagadeesh Kumar, V. & Ravindran, M. & Setoguchi, T. & Takao, M. & Toyota, K. & Nagata, S., 2009. "A twin unidirectional impulse turbine topology for OWC based wave energy plants," Renewable Energy, Elsevier, vol. 34(3), pages 692-698.
    6. Falcão, A.F.O. & Gato, L.M.C. & Nunes, E.P.A.S., 2013. "A novel radial self-rectifying air turbine for use in wave energy converters. Part 2. Results from model testing," Renewable Energy, Elsevier, vol. 53(C), pages 159-164.
    7. Badhurshah, Rameez & Dudhgaonkar, Prasad & Jalihal, Purnima & Samad, Abdus, 2018. "High efficiency design of an impulse turbine used in oscillating water column to harvest wave energy," Renewable Energy, Elsevier, vol. 121(C), pages 344-354.
    8. Simonetti, I. & Cappietti, L. & Elsafti, H. & Oumeraci, H., 2017. "Optimization of the geometry and the turbine induced damping for fixed detached and asymmetric OWC devices: A numerical study," Energy, Elsevier, vol. 139(C), pages 1197-1209.
    9. Ansarifard, Nazanin & Fleming, Alan & Henderson, Alan & Kianejad, S.S. & Chai, Shuhong & Orphin, Jarrah, 2019. "Comparison of inflow and outflow radial air turbines in vented and bidirectional OWC wave energy converters," Energy, Elsevier, vol. 182(C), pages 159-176.
    10. Pereiras, Bruno & Castro, Francisco & Marjani, Abdelatif el & Rodríguez, Miguel A., 2011. "An improved radial impulse turbine for OWC," Renewable Energy, Elsevier, vol. 36(5), pages 1477-1484.
    11. Ferreira, D.N. & Gato, L.M.C. & Eça, L. & Henriques, J.C.C., 2020. "Aerodynamic analysis of a biradial turbine with movable guide-vanes: Incidence and slip effects on efficiency," Energy, Elsevier, vol. 200(C).
    12. Falcão, António F.O. & Gato, Luís M.C. & Henriques, João C.C. & Borges, João E. & Pereiras, Bruno & Castro, Francisco, 2015. "A novel twin-rotor radial-inflow air turbine for oscillating-water-column wave energy converters," Energy, Elsevier, vol. 93(P2), pages 2116-2125.
    13. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O., 2020. "Experimental study of a self-rectifying biradial air turbine with fixed guide-vanes arranged into two concentric annular rows," Energy, Elsevier, vol. 198(C).
    14. Halder, Paresh & Samad, Abdus & Thévenin, Dominique, 2017. "Improved design of a Wells turbine for higher operating range," Renewable Energy, Elsevier, vol. 106(C), pages 122-134.
    15. Thakker, A. & Dhanasekaran, T.S., 2005. "Experimental and computational analysis on guide vane losses of impulse turbine for wave energy conversion," Renewable Energy, Elsevier, vol. 30(9), pages 1359-1372.
    16. Ansarifard, Nazanin & Kianejad, S.S. & Fleming, Alan & Chai, Shuhong, 2019. "A radial inflow air turbine design for a vented oscillating water column," Energy, Elsevier, vol. 166(C), pages 380-391.
    17. Mohamed, M.H. & Shaaban, S., 2013. "Optimization of blade pitch angle of an axial turbine used for wave energy conversion," Energy, Elsevier, vol. 56(C), pages 229-239.
    18. Setoguchi, T & Santhakumar, S & Maeda, H & Takao, M & Kaneko, K, 2001. "A review of impulse turbines for wave energy conversion," Renewable Energy, Elsevier, vol. 23(2), pages 261-292.
    19. Falcão, A.F.O. & Gato, L.M.C. & Nunes, E.P.A.S., 2013. "A novel radial self-rectifying air turbine for use in wave energy converters," Renewable Energy, Elsevier, vol. 50(C), pages 289-298.
    20. Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2012. "Multi-point aerodynamic optimization of the rotor blade sections of an axial-flow impulse air turbine for wave energy conversion," Energy, Elsevier, vol. 45(1), pages 570-580.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C., 2023. "Peak shaving control in OWC wave energy converters: From concept to implementation in the Mutriku wave power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    2. Henriques, J.C.C. & Gato, L.M.C. & La Sala, V. & Carrelhas, A.A.D., 2023. "Acoustic noise emission of air turbines for wave energy conversion: Assessment and analysis," Renewable Energy, Elsevier, vol. 212(C), pages 897-907.
    3. Ferreira, D.N. & Gato, L.M.C. & Eça, L., 2023. "Efficiency of biradial impulse turbines concerning rotor blade angle, guide-vane deflection and blockage," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ansarifard, Nazanin & Kianejad, S.S. & Fleming, Alan & Henderson, Alan & Chai, Shuhong, 2020. "Design optimization of a purely radial turbine for operation in the inhalation mode of an oscillating water column," Renewable Energy, Elsevier, vol. 152(C), pages 540-556.
    2. Nazanin Ansarifard & Alan Fleming & Alan Henderson & S.S. Kianejad & Shuhong Chai, 2019. "Design Optimisation of a Unidirectional Centrifugal Radial-Air-Turbine for Application in OWC Wave Energy Converters," Energies, MDPI, vol. 12(14), pages 1-22, July.
    3. Liu, Hua & Wang, Weijun & Wen, Yadong & Mao, Longbo & Wang, Wenqiang & Mi, Hongju, 2019. "A novel axial flow self-rectifying turbine for use in wave energy converters," Energy, Elsevier, vol. 189(C).
    4. Liu, Zhen & Cui, Ying & Xu, Chuanli & Sun, Lixin & Li, Ming & Jin, Jiyuan, 2019. "Experimental and numerical studies on an OWC axial-flow impulse turbine in reciprocating air flows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Paresh Halder & Hideki Takebe & Krisna Pawitan & Jun Fujita & Shuji Misumi & Tsumoru Shintake, 2020. "Turbine Characteristics of Wave Energy Conversion Device for Extraction Power Using Breaking Waves," Energies, MDPI, vol. 13(4), pages 1-17, February.
    6. Manuel García-Díaz & Bruno Pereiras & Celia Miguel-González & Laudino Rodríguez & Jesús Fernández-Oro, 2021. "CFD Analysis of the Performance of a Double Decker Turbine for Wave Energy Conversion," Energies, MDPI, vol. 14(4), pages 1-19, February.
    7. Gonçalves, Rafael A.A.C. & Teixeira, Paulo R.F. & Didier, Eric & Torres, Fernando R., 2020. "Numerical analysis of the influence of air compressibility effects on an oscillating water column wave energy converter chamber," Renewable Energy, Elsevier, vol. 153(C), pages 1183-1193.
    8. Liu, Zhen & Cui, Ying & Li, Ming & Shi, Hongda, 2017. "Steady state performance of an axial impulse turbine for oscillating water column wave energy converters," Energy, Elsevier, vol. 141(C), pages 1-10.
    9. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O., 2020. "Experimental study of a self-rectifying biradial air turbine with fixed guide-vanes arranged into two concentric annular rows," Energy, Elsevier, vol. 198(C).
    10. Falcão, António F.O. & Henriques, João C.C., 2016. "Oscillating-water-column wave energy converters and air turbines: A review," Renewable Energy, Elsevier, vol. 85(C), pages 1391-1424.
    11. Rodríguez, Laudino & Pereiras, Bruno & García-Diaz, Manuel & Fernández-Oro, Jesús & Castro, Francisco, 2020. "Flow pattern analysis of an outflow radial turbine for twin-turbines-OWC wave energy converters," Energy, Elsevier, vol. 211(C).
    12. Lopes, Bárbara S. & Gato, Luís M.C. & Falcão, António F.O. & Henriques, João C.C., 2019. "Test results of a novel twin-rotor radial inflow self-rectifying air turbine for OWC wave energy converters," Energy, Elsevier, vol. 170(C), pages 869-879.
    13. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C., 2023. "Peak shaving control in OWC wave energy converters: From concept to implementation in the Mutriku wave power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    14. Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2012. "Multi-point aerodynamic optimization of the rotor blade sections of an axial-flow impulse air turbine for wave energy conversion," Energy, Elsevier, vol. 45(1), pages 570-580.
    15. Ferreira, D.N. & Gato, L.M.C. & Eça, L., 2023. "Efficiency of biradial impulse turbines concerning rotor blade angle, guide-vane deflection and blockage," Energy, Elsevier, vol. 266(C).
    16. Iván López & Rodrigo Carballo & David Mateo Fouz & Gregorio Iglesias, 2021. "Design Selection and Geometry in OWC Wave Energy Converters for Performance," Energies, MDPI, vol. 14(6), pages 1-18, March.
    17. Rodríguez, Laudino & Pereiras, Bruno & Fernández-Oro, Jesús & Castro, Francisco, 2019. "Optimization and experimental tests of a centrifugal turbine for an OWC device equipped with a twin turbines configuration," Energy, Elsevier, vol. 171(C), pages 710-720.
    18. Ciappi, Lorenzo & Cheli, Lapo & Simonetti, Irene & Bianchini, Alessandro & Talluri, Lorenzo & Cappietti, Lorenzo & Manfrida, Giampaolo, 2022. "Wave-to-wire models of wells and impulse turbines for oscillating water column wave energy converters operating in the Mediterranean Sea," Energy, Elsevier, vol. 238(PA).
    19. Liu, Zhen & Xu, Chuanli & Kim, Kilwon & Li, Ming, 2022. "Experimental study on the overall performance of a model OWC system under the free-spinning mode in irregular waves," Energy, Elsevier, vol. 250(C).
    20. Torres, Fernando R. & Teixeira, Paulo R.F. & Didier, Eric, 2018. "A methodology to determine the optimal size of a wells turbine in an oscillating water column device by using coupled hydro-aerodynamic models," Renewable Energy, Elsevier, vol. 121(C), pages 9-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:216:y:2021:i:c:s0360544220322179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.