IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v194y2020ics0360544219325228.html
   My bibliography  Save this article

Cooperative optimization scheduling of the electricity-gas coupled system considering wind power uncertainty via a decomposition-coordination framework

Author

Listed:
  • Zhang, Yachao
  • Huang, Zhanghao
  • Zheng, Feng
  • Zhou, Rongyu
  • Le, Jian
  • An, Xueli

Abstract

The extensive installation of gas-fired units and the integration of large-scale wind power connected to power grid have strengthened the interdependency between power system and natural gas network. Consequently, wind power uncertainty accompanying with the coupling interaction by gas-fired units has brought new challenges to the safe and economic operation of electricity-gas coupled system. A decomposition-coordination framework is developed to study the cooperative optimization operation of the integrated electricity-gas coupled system. In this framework, a data-driven distributionally robust optimization (DDRO) model is proposed to solve the power system scheduling problem with wind power uncertainty. Aiming to minimize the expectation of the operation cost under the worst-case distribution, DDRO combines the advantages of the traditional robust optimization (RO) and stochastic optimization. Case studies are implemented on two electricity-gas coupled systems of different scales to verify the effectiveness of the proposed decomposition-coordination framework with DDRO. Specifically, compared with the distributionally robust optimization (DRO) model based on moment information, the solution obtained by DDRO can save 1765.01 $ for the 6-bus power system and 2331.18 $ for the IEEE 24-bus power system, respectively. It is demonstrated that DDRO can achieve less conservative and more economic scheduling solutions compared to DRO.

Suggested Citation

  • Zhang, Yachao & Huang, Zhanghao & Zheng, Feng & Zhou, Rongyu & Le, Jian & An, Xueli, 2020. "Cooperative optimization scheduling of the electricity-gas coupled system considering wind power uncertainty via a decomposition-coordination framework," Energy, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544219325228
    DOI: 10.1016/j.energy.2019.116827
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219325228
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116827?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Chuan & Wu, Lei & Liu, Tianqi & Wei, Wei & Wang, Cheng, 2018. "Co-optimization scheduling of interdependent power and gas systems with electricity and gas uncertainties," Energy, Elsevier, vol. 159(C), pages 1003-1015.
    2. Melamed, Michal & Ben-Tal, Aharon & Golany, Boaz, 2018. "A multi-period unit commitment problem under a new hybrid uncertainty set for a renewable energy source," Renewable Energy, Elsevier, vol. 118(C), pages 909-917.
    3. Zhang, Yachao & Le, Jian & Zheng, Feng & Zhang, Yi & Liu, Kaipei, 2019. "Two-stage distributionally robust coordinated scheduling for gas-electricity integrated energy system considering wind power uncertainty and reserve capacity configuration," Renewable Energy, Elsevier, vol. 135(C), pages 122-135.
    4. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    5. Bai, Linquan & Li, Fangxing & Cui, Hantao & Jiang, Tao & Sun, Hongbin & Zhu, Jinxiang, 2016. "Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 270-279.
    6. Pinto, Mauro S.S. & Miranda, Vladimiro & Saavedra, Osvaldo R., 2016. "Risk and unit commitment decisions in scenarios of wind power uncertainty," Renewable Energy, Elsevier, vol. 97(C), pages 550-558.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faridpak, Behdad & Farrokhifar, Meisam & Murzakhanov, Ilgiz & Safari, Amin, 2020. "A series multi-step approach for operation Co-optimization of integrated power and natural gas systems," Energy, Elsevier, vol. 204(C).
    2. Shahbazbegian, Vahid & Dehghani, Farnam & Shafiyi, Mohammad Agha & Shafie-khah, Miadreza & Laaksonen, Hannu & Ameli, Hossein, 2023. "Techno-economic assessment of energy storage systems in multi-energy microgrids utilizing decomposition methodology," Energy, Elsevier, vol. 283(C).
    3. Wang, Yuwei & Yang, Yuanjuan & Fei, Haoran & Song, Minghao & Jia, Mengyao, 2022. "Wasserstein and multivariate linear affine based distributionally robust optimization for CCHP-P2G scheduling considering multiple uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    4. Xu, Jiuping & Liu, Tingting, 2020. "Technological paradigm-based approaches towards challenges and policy shifts for sustainable wind energy development," Energy Policy, Elsevier, vol. 142(C).
    5. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    6. Hosseini, Seyed Hamid Reza & Allahham, Adib & Walker, Sara Louise & Taylor, Phil, 2021. "Uncertainty analysis of the impact of increasing levels of gas and electricity network integration and storage on Techno-Economic-Environmental performance," Energy, Elsevier, vol. 222(C).
    7. Zhang, Yachao & Liu, Yan & Shu, Shengwen & Zheng, Feng & Huang, Zhanghao, 2021. "A data-driven distributionally robust optimization model for multi-energy coupled system considering the temporal-spatial correlation and distribution uncertainty of renewable energy sources," Energy, Elsevier, vol. 216(C).
    8. Chen, Youliang & Huang, Xiaoguang & Li, Wei & Fan, Rong & Zi, Pingyang & Wang, Xin, 2023. "Application of deep learning modelling of the optimal operation conditions of auxiliary equipment of combined cycle gas turbine power station," Energy, Elsevier, vol. 285(C).
    9. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Gao, Chong & Ma, Zeyang, 2023. "A novel two-layer nested optimization method for a zero-carbon island integrated energy system, incorporating tidal current power generation," Renewable Energy, Elsevier, vol. 218(C).
    10. Liangkai Li & Jingguang Huang & Zhenxing Li & Hao Qi, 2023. "Optimized Dispatch of Regional Integrated Energy System Considering Wind Power Consumption in Low-Temperature Environment," Energies, MDPI, vol. 16(23), pages 1-19, November.
    11. Lu, Xi & Xia, Shiwei & Gu, Wei & Chan, Ka Wing & Shahidehpour, Mohammad, 2021. "Two-stage robust distribution system operation by coordinating electric vehicle aggregator charging and load curtailments," Energy, Elsevier, vol. 226(C).
    12. Sayed, Ahmed Rabee & Wang, Cheng & Chen, Sheng & Shang, Ce & Bi, Tianshu, 2021. "Distributionally robust day-ahead operation of power systems with two-stage gas contracting," Energy, Elsevier, vol. 231(C).
    13. Huang, Gang & Wang, Jianhui & Wang, Cheng & Guo, Chuangxin, 2021. "Cascading imbalance in coupled gas-electric energy systems," Energy, Elsevier, vol. 231(C).
    14. Zhang, Yachao & Liu, Wei & Huang, Zhanghao & Zheng, Feng & Le, Jian & Zhu, Shu, 2021. "Distributionally robust coordination optimization scheduling for electricity-gas-transportation coupled system considering multiple uncertainties," Renewable Energy, Elsevier, vol. 163(C), pages 2037-2052.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseini, Seyed Hamid Reza & Allahham, Adib & Walker, Sara Louise & Taylor, Phil, 2021. "Uncertainty analysis of the impact of increasing levels of gas and electricity network integration and storage on Techno-Economic-Environmental performance," Energy, Elsevier, vol. 222(C).
    2. Zhang, Yachao & Le, Jian & Zheng, Feng & Zhang, Yi & Liu, Kaipei, 2019. "Two-stage distributionally robust coordinated scheduling for gas-electricity integrated energy system considering wind power uncertainty and reserve capacity configuration," Renewable Energy, Elsevier, vol. 135(C), pages 122-135.
    3. Wei, Zhenbo & Wei, Pingan & Chen, Chiyao & Gao, Hongjun & Luo, Zihang & Xiang, Yue, 2023. "Two-stage stochastic decentralized low-carbon economic dispatch of integrated electricity-gas networks," Energy, Elsevier, vol. 282(C).
    4. Zhang, Yachao & Liu, Yan & Shu, Shengwen & Zheng, Feng & Huang, Zhanghao, 2021. "A data-driven distributionally robust optimization model for multi-energy coupled system considering the temporal-spatial correlation and distribution uncertainty of renewable energy sources," Energy, Elsevier, vol. 216(C).
    5. Mirzaei, Mohammad Amin & Sadeghi-Yazdankhah, Ahmad & Mohammadi-Ivatloo, Behnam & Marzband, Mousa & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Integration of emerging resources in IGDT-based robust scheduling of combined power and natural gas systems considering flexible ramping products," Energy, Elsevier, vol. 189(C).
    6. Zhang, Yachao & Liu, Wei & Huang, Zhanghao & Zheng, Feng & Le, Jian & Zhu, Shu, 2021. "Distributionally robust coordination optimization scheduling for electricity-gas-transportation coupled system considering multiple uncertainties," Renewable Energy, Elsevier, vol. 163(C), pages 2037-2052.
    7. Jiajia Li & Jinfu Liu & Peigang Yan & Xingshuo Li & Guowen Zhou & Daren Yu, 2021. "Operation Optimization of Integrated Energy System under a Renewable Energy Dominated Future Scene Considering Both Independence and Benefit: A Review," Energies, MDPI, vol. 14(4), pages 1-36, February.
    8. Li Yao & Xiuli Wang & Tao Qian & Shixiong Qi & Chengzhi Zhu, 2018. "Robust Day-Ahead Scheduling of Electricity and Natural Gas Systems via a Risk-Averse Adjustable Uncertainty Set Approach," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    9. Yuqi Zhang & Chuan He & Anqi Xv & Xiaoxiao Tang, 2022. "Two-Stage Chance-Constrained Coordinated Operation of an Integrated Gas–Electric System," Energies, MDPI, vol. 15(12), pages 1-18, June.
    10. Wang, Cheng & Wei, Wei & Wang, Jianhui & Bi, Tianshu, 2019. "Convex optimization based adjustable robust dispatch for integrated electric-gas systems considering gas delivery priority," Applied Energy, Elsevier, vol. 239(C), pages 70-82.
    11. Qing, Ke & Huang, Qi & Du, Yuefang & Jiang, Lin & Bamisile, Olusola & Hu, Weihao, 2023. "Distributionally robust unit commitment with an adjustable uncertainty set and dynamic demand response," Energy, Elsevier, vol. 262(PA).
    12. Hosseini, Seyed Hamid Reza & Allahham, Adib & Walker, Sara Louise & Taylor, Phil, 2020. "Optimal planning and operation of multi-vector energy networks: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    14. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    15. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    16. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    17. Jun-ya Gotoh & Michael Jong Kim & Andrew E. B. Lim, 2020. "Worst-case sensitivity," Papers 2010.10794, arXiv.org.
    18. Zhang, Hanxiao & Li, Yan-Fu, 2022. "Robust optimization on redundancy allocation problems in multi-state and continuous-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    19. Zhou, Dengji & Yan, Siyun & Huang, Dawen & Shao, Tiemin & Xiao, Wang & Hao, Jiarui & Wang, Chen & Yu, Tianqi, 2022. "Modeling and simulation of the hydrogen blended gas-electricity integrated energy system and influence analysis of hydrogen blending modes," Energy, Elsevier, vol. 239(PA).
    20. Da Li & Shijie Zhang & Yunhan Xiao, 2020. "Interval Optimization-Based Optimal Design of Distributed Energy Resource Systems under Uncertainties," Energies, MDPI, vol. 13(13), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544219325228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.