IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v81y2021i2d10.1007_s10898-020-00986-w.html
   My bibliography  Save this article

Scenario-based cuts for structured two-stage stochastic and distributionally robust p-order conic mixed integer programs

Author

Listed:
  • Manish Bansal

    (Virginia Tech)

  • Yingqiu Zhang

    (Virginia Tech)

Abstract

In this paper, we derive (partial) convex hull for deterministic multi-constraint polyhedral conic mixed integer sets with multiple integer variables using conic mixed integer rounding (CMIR) cut-generation procedure of Atamtürk and Narayanan (Math Prog 122:1–20, 2008), thereby extending their result for a simple polyhedral conic mixed integer set with single constraint and one integer variable. We then introduce two-stage stochastic p-order conic mixed integer programs (denoted by TSS-CMIPs) in which the second stage problems have sum of $$l_p$$ l p -norms in the objective function along with integer variables. First, we present sufficient conditions under which the addition of scenario-based nonlinear cuts in the extensive formulation of TSS-CMIPs is sufficient to relax the integrality restrictions on the second stage integer variables without impacting the integrality of the optimal solution of the TSS-CMIP. We utilize scenario-based CMIR cuts for TSS-CMIPs and their distributionally robust generalizations with structured CMIPs in the second stage, and prove that these cuts provide conic/linear programming equivalent or approximation for the second stage CMIPs. We also perform extensive computational experiments by solving stochastic and distributionally robust capacitated facility location problem and randomly generated structured TSS-CMIPs with polyhedral CMIPs and second-order CMIPs in the second stage, i.e. $$p=1$$ p = 1 and $$p =2$$ p = 2 , respectively. We observe that there is a significant reduction in the total time taken to solve these problems after adding the scenario-based cuts.

Suggested Citation

  • Manish Bansal & Yingqiu Zhang, 2021. "Scenario-based cuts for structured two-stage stochastic and distributionally robust p-order conic mixed integer programs," Journal of Global Optimization, Springer, vol. 81(2), pages 391-433, October.
  • Handle: RePEc:spr:jglopt:v:81:y:2021:i:2:d:10.1007_s10898-020-00986-w
    DOI: 10.1007/s10898-020-00986-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00986-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00986-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Xuan Vinh Doan & Karthik Natarajan & Chung-Piaw Teo, 2010. "Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 580-602, August.
    2. David Wozabal, 2012. "A framework for optimization under ambiguity," Annals of Operations Research, Springer, vol. 193(1), pages 21-47, March.
    3. MILLER, Andrew J. & WOLSEY, Laurence A., 2003. "Tight formulations for some simple mixed integer programs and convex objective integer programs," LIDAM Reprints CORE 1653, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Kibaek Kim & Sanjay Mehrotra, 2015. "A Two-Stage Stochastic Integer Programming Approach to Integrated Staffing and Scheduling with Application to Nurse Management," Operations Research, INFORMS, vol. 63(6), pages 1431-1451, December.
    5. Ward Romeijnders & David P. Morton & Maarten H. van der Vlerk, 2017. "Assessing the Quality of Convex Approximations for Two-Stage Totally Unimodular Integer Recourse Models," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 211-231, May.
    6. Riis, Morten & Andersen, Kim Allan, 2005. "Applying the minimax criterion in stochastic recourse programs," European Journal of Operational Research, Elsevier, vol. 165(3), pages 569-584, September.
    7. NEMHAUSER, George L. & WOLSEY, Laurence A., 1990. "A recursive procedure to generate all cuts for 0-1 mixed integer programs," LIDAM Reprints CORE 894, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Pflug, Georg Ch. & Pichler, Alois & Wozabal, David, 2012. "The 1/N investment strategy is optimal under high model ambiguity," Journal of Banking & Finance, Elsevier, vol. 36(2), pages 410-417.
    9. Alexander Vinel & Pavlo Krokhmal, 2014. "On Valid Inequalities for Mixed Integer p-Order Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 439-456, February.
    10. E. Mijangos, 2015. "An algorithm for two-stage stochastic mixed-integer nonlinear convex problems," Annals of Operations Research, Springer, vol. 235(1), pages 581-598, December.
    11. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    12. Caroe, Claus C. & Tind, Jorgen, 1997. "A cutting-plane approach to mixed 0-1 stochastic integer programs," European Journal of Operational Research, Elsevier, vol. 101(2), pages 306-316, September.
    13. Georg Pflug & David Wozabal, 2007. "Ambiguity in portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 435-442.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bansal, Manish & Mehrotra, Sanjay, 2019. "On solving two-stage distributionally robust disjunctive programs with a general ambiguity set," European Journal of Operational Research, Elsevier, vol. 279(2), pages 296-307.
    2. Hu, Jian & Bansal, Manish & Mehrotra, Sanjay, 2018. "Robust decision making using a general utility set," European Journal of Operational Research, Elsevier, vol. 269(2), pages 699-714.
    3. Luo, Fengqiao & Mehrotra, Sanjay, 2019. "Decomposition algorithm for distributionally robust optimization using Wasserstein metric with an application to a class of regression models," European Journal of Operational Research, Elsevier, vol. 278(1), pages 20-35.
    4. David Wozabal, 2014. "Robustifying Convex Risk Measures for Linear Portfolios: A Nonparametric Approach," Operations Research, INFORMS, vol. 62(6), pages 1302-1315, December.
    5. Ran Ji & Miguel A. Lejeune, 2021. "Data-Driven Optimization of Reward-Risk Ratio Measures," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1120-1137, July.
    6. Hachmi Ben Ameur & Mouna Boujelbène & J. L. Prigent & Emna Triki, 2020. "Optimal Portfolio Positioning on Multiple Assets Under Ambiguity," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 21-57, June.
    7. Jose Blanchet & Lin Chen & Xun Yu Zhou, 2022. "Distributionally Robust Mean-Variance Portfolio Selection with Wasserstein Distances," Management Science, INFORMS, vol. 68(9), pages 6382-6410, September.
    8. Ameur, H. Ben & Prigent, J.L., 2013. "Optimal portfolio positioning under ambiguity," Economic Modelling, Elsevier, vol. 34(C), pages 89-97.
    9. Nilay Noyan & Gábor Rudolf & Miguel Lejeune, 2022. "Distributionally Robust Optimization Under a Decision-Dependent Ambiguity Set with Applications to Machine Scheduling and Humanitarian Logistics," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 729-751, March.
    10. Hailin Sun & Huifu Xu, 2016. "Convergence Analysis for Distributionally Robust Optimization and Equilibrium Problems," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 377-401, May.
    11. Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
    12. Liu, Jia & Chen, Zhiping, 2018. "Time consistent multi-period robust risk measures and portfolio selection models with regime-switching," European Journal of Operational Research, Elsevier, vol. 268(1), pages 373-385.
    13. Ran Ji & Miguel A. Lejeune, 2021. "Data-driven distributionally robust chance-constrained optimization with Wasserstein metric," Journal of Global Optimization, Springer, vol. 79(4), pages 779-811, April.
    14. Chen, Qingxin & Ma, Shoufeng & Li, Hongming & Zhu, Ning & He, Qiao-Chu, 2024. "Optimizing bike rebalancing strategies in free-floating bike-sharing systems: An enhanced distributionally robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    15. Yannan Chen & Hailin Sun & Huifu Xu, 2021. "Decomposition and discrete approximation methods for solving two-stage distributionally robust optimization problems," Computational Optimization and Applications, Springer, vol. 78(1), pages 205-238, January.
    16. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    17. Ch. Pflug, Georg & Timonina-Farkas, Anna & Hochrainer-Stigler, Stefan, 2017. "Incorporating model uncertainty into optimal insurance contract design," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 68-74.
    18. Wang, Zhuolin & You, Keyou & Song, Shiji & Zhang, Yuli, 2020. "Wasserstein distributionally robust shortest path problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 31-43.
    19. Viet Anh Nguyen & Soroosh Shafiee & Damir Filipovi'c & Daniel Kuhn, 2021. "Mean-Covariance Robust Risk Measurement," Papers 2112.09959, arXiv.org, revised Nov 2023.
    20. Ling, Aifan & Sun, Jie & Xiu, Naihua & Yang, Xiaoguang, 2017. "Robust two-stage stochastic linear optimization with risk aversion," European Journal of Operational Research, Elsevier, vol. 256(1), pages 215-229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:81:y:2021:i:2:d:10.1007_s10898-020-00986-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.