IDEAS home Printed from https://ideas.repec.org/a/inm/ormsom/v19y2017i2p150-164.html
   My bibliography  Save this article

How Do Contract Parameters Influence the Economics of Vehicle-to-Grid?

Author

Listed:
  • Gerald Broneske

    (TUM School of Management, Technical University of Munich, 80333 Munich, Germany)

  • David Wozabal

    (TUM School of Management, Technical University of Munich, 80333 Munich, Germany)

Abstract

By modifying the charging patterns of a pool of electric vehicles (EVs), aggregators are able to provide services to the electric grid. The parameters that shape the agreement between aggregators and EV owners, such as plug-in duration and guaranteed driving range, affect the appeal of signing up with an aggregator. Our study examines how these contract parameters influence the profitability of vehicle pools. We use a bottom-up model that encompasses the entire planning problem faced by an aggregator. The model is applied to the German secondary reserve market using actual driving patterns and market data. Our results indicate that contract parameters influence EVs’ value to aggregators in surprising ways, partially contradicting findings in previous literature. In essence, high levels of plug-in durations or low levels of guaranteed driving for planned trips do not necessarily provide the highest profit. Furthermore, we find that realistic nonanticipative strategies lead to annual profits in the range of €167 to €125 per vehicle, which is in the lower range of previous studies. Our results are a starting point for a discussion about optimal contract parameters and the design of corresponding marketing strategies.

Suggested Citation

  • Gerald Broneske & David Wozabal, 2017. "How Do Contract Parameters Influence the Economics of Vehicle-to-Grid?," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 150-164, February.
  • Handle: RePEc:inm:ormsom:v:19:y:2017:i:2:p:150-164
    DOI: 10.1287/msom.2016.0601
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/msom.2016.0601
    Download Restriction: no

    File URL: https://libkey.io/10.1287/msom.2016.0601?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andersson, S.-L. & Elofsson, A.K. & Galus, M.D. & Göransson, L. & Karlsson, S. & Johnsson, F. & Andersson, G., 2010. "Plug-in hybrid electric vehicles as regulating power providers: Case studies of Sweden and Germany," Energy Policy, Elsevier, vol. 38(6), pages 2751-2762, June.
    2. Jargstorf, Johannes & Wickert, Manuel, 2013. "Offer of secondary reserve with a pool of electric vehicles on the German market," Energy Policy, Elsevier, vol. 62(C), pages 185-195.
    3. Parsons, George R. & Hidrue, Michael K. & Kempton, Willett & Gardner, Meryl P., 2014. "Willingness to pay for vehicle-to-grid (V2G) electric vehicles and their contract terms," Energy Economics, Elsevier, vol. 42(C), pages 313-324.
    4. Guille, Christophe & Gross, George, 2009. "A conceptual framework for the vehicle-to-grid (V2G) implementation," Energy Policy, Elsevier, vol. 37(11), pages 4379-4390, November.
    5. Loisel, Rodica & Pasaoglu, Guzay & Thiel, Christian, 2014. "Large-scale deployment of electric vehicles in Germany by 2030: An analysis of grid-to-vehicle and vehicle-to-grid concepts," Energy Policy, Elsevier, vol. 65(C), pages 432-443.
    6. Sioshansi, Ramteen & Fagiani, Riccardo & Marano, Vincenzo, 2010. "Cost and emissions impacts of plug-in hybrid vehicles on the Ohio power system," Energy Policy, Elsevier, vol. 38(11), pages 6703-6712, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heilmann, Christoph & Wozabal, David, 2021. "How much smart charging is smart?," Applied Energy, Elsevier, vol. 291(C).
    2. Esther H. Park Lee & Zofia Lukszo & Paulien Herder, 2018. "Conceptualization of Vehicle-to-Grid Contract Types and Their Formalization in Agent-Based Models," Complexity, Hindawi, vol. 2018, pages 1-11, March.
    3. Jiao, Zihao & Ran, Lun & Zhang, Yanzi & Ren, Yaping, 2021. "Robust vehicle-to-grid power dispatching operations amid sociotechnical complexities," Applied Energy, Elsevier, vol. 281(C).
    4. Ekaterina Abramova & Derek Bunn, 2021. "Optimal Daily Trading of Battery Operations Using Arbitrage Spreads," Energies, MDPI, vol. 14(16), pages 1-23, August.
    5. Heilmann, C. & Friedl, G., 2021. "Factors influencing the economic success of grid-to-vehicle and vehicle-to-grid applications—A review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heilmann, C. & Friedl, G., 2021. "Factors influencing the economic success of grid-to-vehicle and vehicle-to-grid applications—A review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Schill, Wolf-Peter, 2011. "Electric Vehicles in Imperfect Electricity Markets: The case of Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(10), pages 6178-6189.
    3. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Niesten, Eva & Alkemade, Floortje, 2016. "How is value created and captured in smart grids? A review of the literature and an analysis of pilot projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 629-638.
    5. Esther H. Park Lee & Zofia Lukszo & Paulien Herder, 2018. "Conceptualization of Vehicle-to-Grid Contract Types and Their Formalization in Agent-Based Models," Complexity, Hindawi, vol. 2018, pages 1-11, March.
    6. Popović Vlado & Jereb Borut & Kilibarda Milorad & Andrejić Milan & Keshavarzsaleh Abolfazl & Dragan Dejan, 2018. "Electric Vehicles as Electricity Storages in Electric Power Systems," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 9(2), pages 57-72, October.
    7. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    8. Galus, Matthias D. & Zima, Marek & Andersson, Göran, 2010. "On integration of plug-in hybrid electric vehicles into existing power system structures," Energy Policy, Elsevier, vol. 38(11), pages 6736-6745, November.
    9. Colmenar-Santos, A. & de Palacio-Rodriguez, Carlos & Rosales-Asensio, Enrique & Borge-Diez, David, 2017. "Estimating the benefits of vehicle-to-home in islands: The case of the Canary Islands," Energy, Elsevier, vol. 134(C), pages 311-322.
    10. Schill, Wolf-Peter & Gerbaulet, Clemens, 2015. "Power System Impacts of Electric Vehicles in Germany: Charging with Coal or Renewables," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 156, pages 185-196.
    11. van der Kam, Mart & van Sark, Wilfried, 2015. "Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study," Applied Energy, Elsevier, vol. 152(C), pages 20-30.
    12. Ensslen, Axel & Ringler, Philipp & Dörr, Lasse & Jochem, Patrick & Zimmermann, Florian & Fichtner, Wolf, 2018. "Incentivizing smart charging: Modeling charging tariffs for electric vehicles in German and French electricity markets," MPRA Paper 91543, University Library of Munich, Germany, revised 17 Feb 2018.
    13. Schill, Wolf-Peter & Niemeyer, Moritz & Zerrahn, Alexander & Diekmann, Jochen, 2016. "Bereitstellung von Regelleistung durch Elektrofahrzeuge: Modellrechnungen für Deutschland im Jahr 2035," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 40(2), pages 73-87.
    14. Keumju Lim & Justine Jihyun Kim & Jongsu Lee, 2020. "Forecasting the future scale of vehicle to grid technology for electric vehicles and its economic value as future electric energy source: The case of South Korea," Energy & Environment, , vol. 31(8), pages 1350-1366, December.
    15. Khardenavis, Amaiya & Hewage, Kasun & Perera, Piyaruwan & Shotorbani, Amin Mohammadpour & Sadiq, Rehan, 2021. "Mobile energy hub planning for complex urban networks: A robust optimization approach," Energy, Elsevier, vol. 235(C).
    16. Huang, Shoujun & Yang, Jun & Li, Shanjun, 2017. "Black-Scholes option pricing strategy and risk-averse coordination for designing vehicle-to-grid reserve contracts," Energy, Elsevier, vol. 137(C), pages 325-335.
    17. de la Torre, S. & Aguado, J.A. & Sauma, E., 2023. "Optimal scheduling of ancillary services provided by an electric vehicle aggregator," Energy, Elsevier, vol. 265(C).
    18. Luo, Yugong & Feng, Guixuan & Wan, Shuang & Zhang, Shuwei & Li, Victor & Kong, Weiwei, 2020. "Charging scheduling strategy for different electric vehicles with optimization for convenience of drivers, performance of transport system and distribution network," Energy, Elsevier, vol. 194(C).
    19. Shafie-khah, M. & Heydarian-Forushani, E. & Golshan, M.E.H. & Siano, P. & Moghaddam, M.P. & Sheikh-El-Eslami, M.K. & Catalão, J.P.S., 2016. "Optimal trading of plug-in electric vehicle aggregation agents in a market environment for sustainability," Applied Energy, Elsevier, vol. 162(C), pages 601-612.
    20. San Román, Tomás Gómez & Momber, Ilan & Abbad, Michel Rivier & Sánchez Miralles, Álvaro, 2011. "Regulatory framework and business models for charging plug-in electric vehicles: Infrastructure, agents, and commercial relationships," Energy Policy, Elsevier, vol. 39(10), pages 6360-6375, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:19:y:2017:i:2:p:150-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.