IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v266y2023ics036054422203314x.html
   My bibliography  Save this article

On the effect of different placement schemes of metal foam as volumetric absorber on the thermal performance of a direct absorption parabolic trough solar collector

Author

Listed:
  • Heyhat, Mohammad Mahdi
  • Zahi Khattar, Murtadha

Abstract

The main message of this paper is to answer the question of how the thermal efficiency of a direct absorption solar collector is affected by the placement scheme of porous foam in its absorber tube. Hence, ten different layouts of open cell copper porous foam are examined. The thermal efficiency of a constructed direct absorption parabolic trough solar collector is obtained in three different inlet temperatures (20, 30, and 40 °C) and five flow rates (40, 60, 80, 100, and 120 Lph) for various layouts. The results revealed that the placement of porous foam in the lower half of the absorber tube than the upper half leads to a higher thermal efficiency. The highest obtained thermal efficiencies for cases where the entire of absorber tube, center of it, and perimeter of it were filled with porous foam were 50.8%, 46.1%, and 44.7%, respectively. The placement of porous foam in the center of the absorber tube leads to higher pressure drop and thermal efficiency than peripheral placement. Considering the performance index, the peripheral placement of porous foam in the absorber tube is preferred. Moreover, porous foam with higher pore density (PPI) can lead to a higher thermal efficiency.

Suggested Citation

  • Heyhat, Mohammad Mahdi & Zahi Khattar, Murtadha, 2023. "On the effect of different placement schemes of metal foam as volumetric absorber on the thermal performance of a direct absorption parabolic trough solar collector," Energy, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:energy:v:266:y:2023:i:c:s036054422203314x
    DOI: 10.1016/j.energy.2022.126428
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422203314X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126428?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shahsavari, Amir & Akbari, Morteza, 2018. "Potential of solar energy in developing countries for reducing energy-related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 275-291.
    2. Heyhat, M.M. & Valizade, M. & Abdolahzade, Sh. & Maerefat, M., 2020. "Thermal efficiency enhancement of direct absorption parabolic trough solar collector (DAPTSC) by using nanofluid and metal foam," Energy, Elsevier, vol. 192(C).
    3. Adams, Samuel & Klobodu, Edem Kwame Mensah & Apio, Alfred, 2018. "Renewable and non-renewable energy, regime type and economic growth," Renewable Energy, Elsevier, vol. 125(C), pages 755-767.
    4. Rahman, Mohammad Mafizur & Velayutham, Eswaran, 2020. "Renewable and non-renewable energy consumption-economic growth nexus: New evidence from South Asia," Renewable Energy, Elsevier, vol. 147(P1), pages 399-408.
    5. Ham, Jeonggyun & Shin, Yunchan & Cho, Honghyun, 2022. "Comparison of thermal performance between a surface and a volumetric absorption solar collector using water and Fe3O4 nanofluid," Energy, Elsevier, vol. 239(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akan, Taner & Gündüz, Halil İbrahim & Emirmahmutoğlu, Furkan & Işık, Ali Haydar, 2023. "Disaggregating renewable energy-growth nexus: W-ARDL and W-Toda-Yamamoto approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Namahoro, J.P. & Nzabanita, J. & Wu, Q., 2021. "The impact of total and renewable energy consumption on economic growth in lower and middle- and upper-middle-income groups: Evidence from CS-DL and CCEMG analysis," Energy, Elsevier, vol. 237(C).
    3. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
    4. Khan, Irfan & Hou, Fujun & Zakari, Abdulrasheed & Tawiah, Vincent Konadu, 2021. "The dynamic links among energy transitions, energy consumption, and sustainable economic growth: A novel framework for IEA countries," Energy, Elsevier, vol. 222(C).
    5. Oryani, Bahareh & Koo, Yoonmo & Rezania, Shahabaldin & Shafiee, Afsaneh, 2021. "Investigating the asymmetric impact of energy consumption on reshaping future energy policy and economic growth in Iran using extended Cobb-Douglas production function," Energy, Elsevier, vol. 216(C).
    6. Djellouli, Nassima & Abdelli, Latifa & Elheddad, Mohamed & Ahmed, Rizwan & Mahmood, Haider, 2022. "The effects of non-renewable energy, renewable energy, economic growth, and foreign direct investment on the sustainability of African countries," Renewable Energy, Elsevier, vol. 183(C), pages 676-686.
    7. Aslan, Alper & Ocal, Oguz & Ozsolak, Baki & Ozturk, Ilhan, 2022. "Renewable energy and economic growth relationship under the oil reserve ownership: Evidence from panel VAR approach," Renewable Energy, Elsevier, vol. 188(C), pages 402-410.
    8. Norouzi, Amir Mohammad & Siavashi, Majid & Ahmadi, Rouhollah & Tahmasbi, Milad, 2021. "Experimental study of a parabolic trough solar collector with rotating absorber tube," Renewable Energy, Elsevier, vol. 168(C), pages 734-749.
    9. Alvarado, Rafael & Deng, Qiushi & Tillaguango, Brayan & Méndez, Priscila & Bravo, Diana & Chamba, José & Alvarado-Lopez, María & Ahmad, Munir, 2021. "Do economic development and human capital decrease non-renewable energy consumption? Evidence for OECD countries," Energy, Elsevier, vol. 215(PB).
    10. Armeanu, Daniel Stefan & Joldes, Camelia Catalina & Gherghina, Stefan Cristian & Andrei, Jean Vasile, 2021. "Understanding the multidimensional linkages among renewable energy, pollution, economic growth and urbanization in contemporary economies: Quantitative assessments across different income countries’ g," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    11. Yasmeen, Humaira & Tan, Qingmei & Zameer, Hashim & Vo, Xuan Vinh & Shahbaz, Muhammad, 2021. "Discovering the relationship between natural resources, energy consumption, gross capital formation with economic growth: Can lower financial openness change the curse into blessing," Resources Policy, Elsevier, vol. 71(C).
    12. Pablo Ponce & José Álvarez-García & Johanna Medina & María de la Cruz del Río-Rama, 2021. "Financial Development, Clean Energy, and Human Capital: Roadmap towards Sustainable Growth in América Latina," Energies, MDPI, vol. 14(13), pages 1-16, June.
    13. Appiah-Otoo, Isaac & Chen, Xudong & Ampah, Jeffrey Dankwa, 2023. "Exploring the moderating role of foreign direct investment in the renewable energy and economic growth nexus: Evidence from West Africa," Energy, Elsevier, vol. 281(C).
    14. Víctor Dante Ayaviri-Nina & Andrés Alejandro Olmedo Falconi & Alba Isabel Maldonado Nunez & Edgar Anibal Rodriguez, 2024. "Impact of Renewable Electricity Consumption on the Economic Growth of Ecuador. Evidence from the Joint Cointegration Test," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 663-671, July.
    15. Namahoro, J.P. & Wu, Q. & Su, H., 2023. "Wind energy, industrial-economic development and CO2 emissions nexus: Do droughts matter?," Energy, Elsevier, vol. 278(PA).
    16. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    17. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng & Li, Yunhai, 2023. "Mathematical and experimental investigation about the dual-source heat pump integrating low concentrated photovoltaic and finned-tube exchanger," Energy, Elsevier, vol. 263(PE).
    18. Qian, Yuan & Scherer, Laura & Tukker, Arnold & Behrens, Paul, 2020. "China's potential SO2 emissions from coal by 2050," Energy Policy, Elsevier, vol. 147(C).
    19. Xu, Deyi & Sheraz, Muhammad & Hassan, Arshad & Sinha, Avik & Ullah, Saif, 2022. "Financial development, renewable energy and CO2 emission in G7 countries: New evidence from non-linear and asymmetric analysis," Energy Economics, Elsevier, vol. 109(C).
    20. Khadijah Iddrisu & Isaac Ofoeda & Joshua Yindenaba Abor, 2023. "Inward foreign direct investment and inclusiveness of growth: will renewable energy consumption make a difference?," International Economics and Economic Policy, Springer, vol. 20(3), pages 367-388, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:266:y:2023:i:c:s036054422203314x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.