Lift-type and drag-type hydro turbine with vertical axis for power generation from water pipelines
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2019.116070
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shimokawa, Kai & Furukawa, Akinori & Okuma, Kusuo & Matsushita, Daisuke & Watanabe, Satoshi, 2012. "Experimental study on simplification of Darrieus-type hydro turbine with inlet nozzle for extra-low head hydropower utilization," Renewable Energy, Elsevier, vol. 41(C), pages 376-382.
- Du, Jiyun & Yang, Hongxing & Shen, Zhicheng & Chen, Jian, 2017. "Micro hydro power generation from water supply system in high rise buildings using pump as turbines," Energy, Elsevier, vol. 137(C), pages 431-440.
- Chen, J. & Yang, H.X. & Liu, C.P. & Lau, C.H. & Lo, M., 2013. "A novel vertical axis water turbine for power generation from water pipelines," Energy, Elsevier, vol. 54(C), pages 184-193.
- Golecha, Kailash & Eldho, T.I. & Prabhu, S.V., 2011. "Influence of the deflector plate on the performance of modified Savonius water turbine," Applied Energy, Elsevier, vol. 88(9), pages 3207-3217.
- Akwa, João Vicente & Vielmo, Horácio Antonio & Petry, Adriane Prisco, 2012. "A review on the performance of Savonius wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3054-3064.
- Islam, Mazharul & Ting, David S.-K. & Fartaj, Amir, 2008. "Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1087-1109, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Du, Jiyun & Ge, Zhan & Wu, Hao & Shi, Xudong & Yuan, Fangyang & Yu, Wei & Wang, Dongxiang & Yang, Xinjun, 2022. "Study on the effects of runner geometric parameters on the performance of micro Francis turbines used in water supply system of high-rise buildings," Energy, Elsevier, vol. 256(C).
- Gao, Jinjin & Liu, Han & Lee, Jiyong & Zheng, Yuan & Guala, Michele & Shen, Lian, 2022. "Large-eddy simulation and Co-Design strategy for a drag-type vertical axis hydrokinetic turbine in open channel flows," Renewable Energy, Elsevier, vol. 181(C), pages 1305-1316.
- Huixiang Chen & Kan Kan & Haolan Wang & Maxime Binama & Yuan Zheng & Hui Xu, 2021. "Development and Numerical Performance Analysis of a Micro Turbine in a Tap-Water Pipeline," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
- Shen, Zhicheng & Yao, Yao & Wang, Qiliang & Lu, Lin & Yang, Hongxing, 2023. "A novel micro power generation system to efficiently harvest hydroelectric energy for power supply to water intelligent networks of urban water pipelines," Energy, Elsevier, vol. 268(C).
- Zhang, Guangchao & Lv, Kai & Xie, Yudong & Wang, Yong & Shan, Kunshan, 2023. "Performance study of a control valve with energy harvesting based on a modified passive model," Energy, Elsevier, vol. 285(C).
- Kumar, Rakesh & Nag, Aditya Kumar & Sarkar, Shibayan, 2024. "Performance analysis of spherically curbed hydrokinetic turbine arranged in ln-line array in a closed conduit," Renewable Energy, Elsevier, vol. 232(C).
- Bao, Mupeng & Xie, Yudong & Zhang, Guangchao & Wang, Yong & Lv, Kai & Shan, Kunshan, 2023. "Research on hydrodynamic characteristics and performance improvement of ball valve integrating fluid regulation and energy harvesting," Renewable Energy, Elsevier, vol. 218(C).
- Zheng, Xianghao & Zhang, Suqi & Zhang, Yuning & Li, Jinwei & Zhang, Yuning, 2023. "Dynamic characteristic analysis of pressure pulsations of a pump turbine in turbine mode utilizing variational mode decomposition combined with Hilbert transform," Energy, Elsevier, vol. 280(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Payambarpour, S. Abdolkarim & Najafi, Amir F. & Magagnato, Franco, 2020. "Investigation of deflector geometry and turbine aspect ratio effect on 3D modified in-pipe hydro Savonius turbine: Parametric study," Renewable Energy, Elsevier, vol. 148(C), pages 44-59.
- Kumar, Rakesh & Nag, Aditya Kumar & Sarkar, Shibayan, 2024. "Performance analysis of spherically curbed hydrokinetic turbine arranged in ln-line array in a closed conduit," Renewable Energy, Elsevier, vol. 232(C).
- Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
- Huixiang Chen & Kan Kan & Haolan Wang & Maxime Binama & Yuan Zheng & Hui Xu, 2021. "Development and Numerical Performance Analysis of a Micro Turbine in a Tap-Water Pipeline," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
- Jiyong Lee & Mirko Musa & Chris Feist & Jinjin Gao & Lian Shen & Michele Guala, 2019. "Wake Characteristics and Power Performance of a Drag-Driven in-Bank Vertical Axis Hydrokinetic Turbine," Energies, MDPI, vol. 12(19), pages 1-20, September.
- Driss, Zied & Mlayeh, Olfa & Driss, Slah & Driss, Dorra & Maaloul, Makram & Abid, Mohamed Salah, 2015. "Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors," Energy, Elsevier, vol. 89(C), pages 708-729.
- Alom, Nur & Saha, Ujjwal K., 2018. "Performance evaluation of vent-augmented elliptical-bladed savonius rotors by numerical simulation and wind tunnel experiments," Energy, Elsevier, vol. 152(C), pages 277-290.
- Wu, Kuo-Tsai & Lo, Kuo-Hao & Kao, Ruey-Chy & Hwang, Sheng-Jye, 2023. "Design and performance analysis of a passive rotatable deflector diversion tail for tidal current power generation hydrokinetic turbines," Energy, Elsevier, vol. 283(C).
- Montelpare, Sergio & D'Alessandro, Valerio & Zoppi, Andrea & Ricci, Renato, 2018. "Experimental study on a modified Savonius wind rotor for street lighting systems. Analysis of external appendages and elements," Energy, Elsevier, vol. 144(C), pages 146-158.
- Ricci, Renato & Romagnoli, Roberto & Montelpare, Sergio & Vitali, Daniele, 2016. "Experimental study on a Savonius wind rotor for street lighting systems," Applied Energy, Elsevier, vol. 161(C), pages 143-152.
- Bizhanpour, Ali & Hasanzadeh, Nima & Najafi, Amir F. & Magagnato, Franco, 2023. "Investigation of different deflector geometry and mechanism effect on the performance of an in-pipe hydro Savonius turbine," Applied Energy, Elsevier, vol. 350(C).
- Chen, Jian & Yang, Hongxing & Yang, Mo & Xu, Hongtao & Hu, Zuohuan, 2015. "A comprehensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1709-1720.
- Kerikous, Emeel & Thévenin, Dominique, 2019. "Optimal shape and position of a thick deflector plate in front of a hydraulic Savonius turbine," Energy, Elsevier, vol. 189(C).
- Wong, Kok Hoe & Chong, Wen Tong & Sukiman, Nazatul Liana & Poh, Sin Chew & Shiah, Yui-Chuin & Wang, Chin-Tsan, 2017. "Performance enhancements on vertical axis wind turbines using flow augmentation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 904-921.
- Kumar, Rakesh & Raahemifar, Kaamran & Fung, Alan S., 2018. "A critical review of vertical axis wind turbines for urban applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 281-291.
- Satou, Eiichi & Ikeda, Toshihiko & Uchiyama, Tomomi & Okayama, Tomoko & Miyazawa, Tomoaki & Takamure, Kotaro & Tsunashima, Daisuke, 2022. "Development of an undershot cross-flow hydraulic turbine resistant to snow and ice masses flowing in an installation canal," Renewable Energy, Elsevier, vol. 200(C), pages 146-153.
- Ma, Jiaze & Wang, Yufei & Feng, Xiao, 2017. "Energy recovery in cooling water system by hydro turbines," Energy, Elsevier, vol. 139(C), pages 329-340.
- Roy, Sukanta & Saha, Ujjwal K., 2015. "Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine," Applied Energy, Elsevier, vol. 137(C), pages 117-125.
- Tartuferi, Mariano & D'Alessandro, Valerio & Montelpare, Sergio & Ricci, Renato, 2015. "Enhancement of Savonius wind rotor aerodynamic performance: a computational study of new blade shapes and curtain systems," Energy, Elsevier, vol. 79(C), pages 371-384.
- Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
More about this item
Keywords
Water pipeline monitor; Vertical axis hydro turbine; Lift-type runner; Drag-type runner; Startup performance; Numerical simulation and experimental test;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:188:y:2019:i:c:s0360544219317657. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.