IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v256y2022ics0360544222015195.html
   My bibliography  Save this article

Study on the effects of runner geometric parameters on the performance of micro Francis turbines used in water supply system of high-rise buildings

Author

Listed:
  • Du, Jiyun
  • Ge, Zhan
  • Wu, Hao
  • Shi, Xudong
  • Yuan, Fangyang
  • Yu, Wei
  • Wang, Dongxiang
  • Yang, Xinjun

Abstract

With the increasing emphasis on clean energy, there is growing attention to the use of microturbines or pumps as turbines (PATs) to recover excess hydraulic energy in the water supply system (WSS) of high-rise buildings. In this paper, a micro Francis turbine for WSS in high-rise buildings was presented, and the effects of runner geometric parameters on turbine performance were investigated through computational fluid dynamics (CFD) and lab tests. In the research process, based on the theoretical design results and the numerical optimization of blade exit angle and blade shape, a turbine model was obtained for laboratory testing. The test results show that the Francis turbine has a relatively good performance in both energy generation and water head reduction. In addition, the feasibility of the used runner design method was verified in this special working condition by comparing the experimental performance of turbines with different runner inlet widths. Based on a numerical model that has been validated by experimental results, further optimization for blade thickness and blade number was carried out through CFD simulations. The simulation results show that blade thickness and blade number can affect energy consumption and pressure distribution in the runner and thus affect turbine performance, and there are optimal values to achieve optimal turbine performance. And the optimized model had an output power of 148 W and an efficiency of 21.23% at the design condition.

Suggested Citation

  • Du, Jiyun & Ge, Zhan & Wu, Hao & Shi, Xudong & Yuan, Fangyang & Yu, Wei & Wang, Dongxiang & Yang, Xinjun, 2022. "Study on the effects of runner geometric parameters on the performance of micro Francis turbines used in water supply system of high-rise buildings," Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015195
    DOI: 10.1016/j.energy.2022.124616
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222015195
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124616?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Seung-Jun & Choi, Young-Seok & Cho, Yong & Choi, Jong-Woong & Kim, Jin-Hyuk, 2019. "Effect of blade thickness on the hydraulic performance of a Francis hydro turbine model," Renewable Energy, Elsevier, vol. 134(C), pages 807-817.
    2. Armando Carravetta & Giuseppe Del Giudice & Oreste Fecarotta & Helena M. Ramos, 2013. "PAT Design Strategy for Energy Recovery in Water Distribution Networks by Electrical Regulation," Energies, MDPI, vol. 6(1), pages 1-14, January.
    3. Aditya Gupta & Neeraj Bokde & Kishore Kulat & Zaher Mundher Yaseen, 2020. "Nodal Matrix Analysis for Optimal Pressure-Reducing Valve Localization in a Water Distribution System," Energies, MDPI, vol. 13(8), pages 1-17, April.
    4. Du, Jiyun & Yang, Hongxing & Shen, Zhicheng & Chen, Jian, 2017. "Micro hydro power generation from water supply system in high rise buildings using pump as turbines," Energy, Elsevier, vol. 137(C), pages 431-440.
    5. Muhirwa, Alexis & Cai, Wei-Hua & Su, Wen-Tao & Liu, Quanzhong & Binama, Maxime & Li, Biao & Wu, Jian, 2020. "A review on remedial attempts to counteract the power generation compromise from draft tubes of hydropower plants," Renewable Energy, Elsevier, vol. 150(C), pages 743-764.
    6. Zhang, Ling & Zhou, Peng & Newton, Sidney & Fang, Jian-xin & Zhou, De-qun & Zhang, Lu-ping, 2015. "Evaluating clean energy alternatives for Jiangsu, China: An improved multi-criteria decision making method," Energy, Elsevier, vol. 90(P1), pages 953-964.
    7. Coelho, B. & Andrade-Campos, A., 2014. "Efficiency achievement in water supply systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 59-84.
    8. Krzemianowski, Zbigniew & Steller, Janusz, 2021. "High specific speed Francis turbine for small hydro purposes - Design methodology based on solving the inverse problem in fluid mechanics and the cavitation test experience," Renewable Energy, Elsevier, vol. 169(C), pages 1210-1228.
    9. Jiyun, Du & Hongxing, Yang & Zhicheng, Shen & Xiaodong, Guo, 2018. "Development of an inline vertical cross-flow turbine for hydropower harvesting in urban water supply pipes," Renewable Energy, Elsevier, vol. 127(C), pages 386-397.
    10. Yang, Wei & Hou, Yimin & Jia, Huiting & Liu, Benqing & Xiao, Ruofu, 2019. "Lift-type and drag-type hydro turbine with vertical axis for power generation from water pipelines," Energy, Elsevier, vol. 188(C).
    11. Lotfabadi, Pooya, 2014. "High-rise buildings and environmental factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 285-295.
    12. Li, Xiao-Bin & Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Muhirwa, Alexis & Li, Biao & Li, Feng-Chen, 2020. "Runner blade number influencing RPT runner flow characteristics under off-design conditions," Renewable Energy, Elsevier, vol. 152(C), pages 876-891.
    13. Cheung, C.T. & Mui, K.W. & Wong, L.T., 2013. "Energy efficiency of elevated water supply tanks for high-rise buildings," Applied Energy, Elsevier, vol. 103(C), pages 685-691.
    14. Muhirwa, Alexis & Li, Biao & Su, Wen-Tao & Liu, Quan-Zhong & Binama, Maxime & Wu, Jian & Cai, Wei-Hua, 2020. "Investigation on mutual traveling influences between the draft tube and upstream components of a Francis turbine unit," Renewable Energy, Elsevier, vol. 162(C), pages 973-992.
    15. Samora, Irene & Hasmatuchi, Vlad & Münch-Alligné, Cécile & Franca, Mário J. & Schleiss, Anton J. & Ramos, Helena M., 2016. "Experimental characterization of a five blade tubular propeller turbine for pipe inline installation," Renewable Energy, Elsevier, vol. 95(C), pages 356-366.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Tomczyk & Krzysztof Mastalerek & Mirosław Wiatkowski & Alban Kuriqi & Jakub Jurasz, 2023. "Assessment of a Francis Micro Hydro Turbine Performance Installed in a Wastewater Treatment Plant," Energies, MDPI, vol. 16(20), pages 1-19, October.
    2. Wang, Kaijie & Wang, Shuli & Meng, Puyu & Wang, Chengpeng & Li, Yuhai & Zheng, Wenxian & Liu, Jun & Kou, Jiawen, 2023. "Strategies employed in the design and optimization of pump as turbine runner," Renewable Energy, Elsevier, vol. 216(C).
    3. Shen, Zhicheng & Yao, Yao & Wang, Qiliang & Lu, Lin & Yang, Hongxing, 2023. "A novel micro power generation system to efficiently harvest hydroelectric energy for power supply to water intelligent networks of urban water pipelines," Energy, Elsevier, vol. 268(C).
    4. Shojaeefard, Mohammad Hassan & Saremian, Salman, 2024. "Analyzing the impact of blade geometrical parameters on energy recovery and efficiency of centrifugal pump as turbine installed in the pressure-reducing station," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huixiang Chen & Kan Kan & Haolan Wang & Maxime Binama & Yuan Zheng & Hui Xu, 2021. "Development and Numerical Performance Analysis of a Micro Turbine in a Tap-Water Pipeline," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    2. Bizhanpour, Ali & Hasanzadeh, Nima & Najafi, Amir F. & Magagnato, Franco, 2023. "Investigation of different deflector geometry and mechanism effect on the performance of an in-pipe hydro Savonius turbine," Applied Energy, Elsevier, vol. 350(C).
    3. Du, Jiyun & Yang, Hongxing & Shen, Zhicheng & Chen, Jian, 2017. "Micro hydro power generation from water supply system in high rise buildings using pump as turbines," Energy, Elsevier, vol. 137(C), pages 431-440.
    4. Sinagra, Marco & Aricò, Costanza & Tucciarelli, Tullio & Morreale, Gabriele, 2020. "Experimental and numerical analysis of a backpressure Banki inline turbine for pressure regulation and energy production," Renewable Energy, Elsevier, vol. 149(C), pages 980-986.
    5. Zhang, Guangchao & Lv, Kai & Xie, Yudong & Wang, Yong & Shan, Kunshan, 2023. "Performance study of a control valve with energy harvesting based on a modified passive model," Energy, Elsevier, vol. 285(C).
    6. Boroomandnia, Arezoo & Rismanchi, Behzad & Wu, Wenyan, 2022. "A review of micro hydro systems in urban areas: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    7. Du, Jiyun & Shen, Zhicheng & Yang, Hongxing, 2018. "Effects of different block designs on the performance of inline cross-flow turbines in urban water mains," Applied Energy, Elsevier, vol. 228(C), pages 97-107.
    8. Yao, Yao & Shen, Zhicheng & Wang, Qiliang & Du, Jiyun & Lu, Lin & Yang, Hongxing, 2023. "Development of an inline bidirectional micro crossflow turbine for hydropower harvesting from water supply pipelines," Applied Energy, Elsevier, vol. 329(C).
    9. Zhang, Xiaohong & Qi, Yan & Wang, Yanqing & Wu, Jun & Lin, Lili & Peng, Hong & Qi, Hui & Yu, Xiaoyu & Zhang, Yanzong, 2016. "Effect of the tap water supply system on China's economy and energy consumption, and its emissions’ impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 660-671.
    10. Shen, Zhicheng & Yao, Yao & Wang, Qiliang & Lu, Lin & Yang, Hongxing, 2023. "A novel micro power generation system to efficiently harvest hydroelectric energy for power supply to water intelligent networks of urban water pipelines," Energy, Elsevier, vol. 268(C).
    11. Delgado, J. & Ferreira, J.P. & Covas, D.I.C. & Avellan, F., 2019. "Variable speed operation of centrifugal pumps running as turbines. Experimental investigation," Renewable Energy, Elsevier, vol. 142(C), pages 437-450.
    12. Binama, Maxime & Kan, Kan & Chen, Hui-Xiang & Zheng, Yuan & Zhou, Daqing & Su, Wen-Tao & Muhirwa, Alexis & Ntayomba, James, 2021. "Flow instability transferability characteristics within a reversible pump turbine (RPT) under large guide vane opening (GVO)," Renewable Energy, Elsevier, vol. 179(C), pages 285-307.
    13. Zhou, Ling & Hang, Jianwei & Bai, Ling & Krzemianowski, Zbigniew & El-Emam, Mahmoud A. & Yasser, Eman & Agarwal, Ramesh, 2022. "Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review," Applied Energy, Elsevier, vol. 318(C).
    14. Wen-Tao Su & Wei Zhao & Maxime Binama & Yue Zhao & Jian-Ying Huang & Xue-Ren Chen, 2022. "Experimental Francis Turbine Cavitation Performances of a Hydro-Energy Plant," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    15. Su, Wen-Tao & Binama, Maxime & Li, Yang & Zhao, Yue, 2020. "Study on the method of reducing the pressure fluctuation of hydraulic turbine by optimizing the draft tube pressure distribution," Renewable Energy, Elsevier, vol. 162(C), pages 550-560.
    16. Pérez-Sánchez, Modesto & Sánchez-Romero, Francisco Javier & López-Jiménez, P. Amparo & Ramos, Helena M., 2018. "PATs selection towards sustainability in irrigation networks: Simulated annealing as a water management tool," Renewable Energy, Elsevier, vol. 116(PA), pages 234-249.
    17. Jiyun, Du & Zhicheng, Shen & Hongxing, Yang, 2018. "Numerical study on the impact of runner inlet arc angle on the performance of inline cross-flow turbine used in urban water mains," Energy, Elsevier, vol. 158(C), pages 228-237.
    18. Ramón Barberán & Diego Colás & Pilar Egea, 2019. "Water Supply and Energy in Residential Buildings: Potential Savings and Financial Profitability," Sustainability, MDPI, vol. 11(1), pages 1-12, January.
    19. Mariana Simão & Helena M. Ramos, 2019. "Micro Axial Turbine Hill Charts: Affinity Laws, Experiments and CFD Simulations for Different Diameters," Energies, MDPI, vol. 12(15), pages 1-15, July.
    20. Postacchini, Matteo & Di Giuseppe, Elisa & Eusebi, Anna Laura & Pelagalli, Leonardo & Darvini, Giovanna & Cipolletta, Giulia & Fatone, Francesco, 2022. "Energy saving from small-sized urban contexts: Integrated application into the domestic water cycle," Renewable Energy, Elsevier, vol. 199(C), pages 1300-1317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.