IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics0960148123012557.html
   My bibliography  Save this article

Research on hydrodynamic characteristics and performance improvement of ball valve integrating fluid regulation and energy harvesting

Author

Listed:
  • Bao, Mupeng
  • Xie, Yudong
  • Zhang, Guangchao
  • Wang, Yong
  • Lv, Kai
  • Shan, Kunshan

Abstract

With the development of fluid transmission and distribution network in the direction of intelligent pipe network, it is urgent to solve the power supply problem of many instruments in the pipe network. However, solving the problem of power supply for intelligent pipe network systems in remote areas and poor site conditions is a challenging task, and the power supply problem can be solved if the fluid energy in the pipe network can be harvested to power instruments such as sensors. Valve is essential equipment in pipe network system, and installing impeller in their spool can harvest fluid energy for power generation. In this paper, in order to improve the ability of the impeller to harvest fluid energy, the blade profile is optimized by parametrically defined method based on the Isight platform. The energy harvesting under different parameters is obtained through CFD simulation software, the Kriging model is established according to the sample data, and the NSGA-II algorithm is used to optimize. After optimization, the impeller shaft power is increased by 7.22%, the energy harvesting efficiency is increased by 7.50%, and the optimal blade profile is obtained. The ability of the impeller to harvest fluid energy is significantly improved.

Suggested Citation

  • Bao, Mupeng & Xie, Yudong & Zhang, Guangchao & Wang, Yong & Lv, Kai & Shan, Kunshan, 2023. "Research on hydrodynamic characteristics and performance improvement of ball valve integrating fluid regulation and energy harvesting," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012557
    DOI: 10.1016/j.renene.2023.119340
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123012557
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119340?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Tao & Yang, Hongxing & Guo, Xiaodong & Lou, Chengzhi & Shen, Zhicheng & Chen, Jian & Du, Jiyun, 2018. "Development of inline hydroelectric generation system from municipal water pipelines," Energy, Elsevier, vol. 144(C), pages 535-548.
    2. Bao, Mupeng & Xie, Yudong & Zhang, Xinbiao & Ju, Jinyong & Wang, Yong, 2023. "Performance improvement of a control valve with energy harvesting," Energy, Elsevier, vol. 263(PC).
    3. Lv, Kai & Xie, Yudong & Wang, Yong & Sun, Guang, 2021. "Performance investigations of a control valve with the function of energy harvesting," Energy, Elsevier, vol. 214(C).
    4. Yang, Wei & Hou, Yimin & Jia, Huiting & Liu, Benqing & Xiao, Ruofu, 2019. "Lift-type and drag-type hydro turbine with vertical axis for power generation from water pipelines," Energy, Elsevier, vol. 188(C).
    5. Huixiang Chen & Kan Kan & Haolan Wang & Maxime Binama & Yuan Zheng & Hui Xu, 2021. "Development and Numerical Performance Analysis of a Micro Turbine in a Tap-Water Pipeline," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Guangchao & Lv, Kai & Xie, Yudong & Wang, Yong & Shan, Kunshan, 2023. "Performance study of a control valve with energy harvesting based on a modified passive model," Energy, Elsevier, vol. 285(C).
    2. Bao, Mupeng & Xie, Yudong & Zhang, Xinbiao & Ju, Jinyong & Wang, Yong, 2023. "Performance improvement of a control valve with energy harvesting," Energy, Elsevier, vol. 263(PC).
    3. Ju, Jinyong & Xie, Yudong & Han, Jiazhen & Wang, Yong & Wang, Haibo, 2024. "Performance improvement of the self-power control valve based on digital twin technology," Energy, Elsevier, vol. 300(C).
    4. Shen, Zhicheng & Yao, Yao & Wang, Qiliang & Lu, Lin & Yang, Hongxing, 2023. "A novel micro power generation system to efficiently harvest hydroelectric energy for power supply to water intelligent networks of urban water pipelines," Energy, Elsevier, vol. 268(C).
    5. Yao, Yao & Shen, Zhicheng & Wang, Qiliang & Du, Jiyun & Lu, Lin & Yang, Hongxing, 2023. "Development of an inline bidirectional micro crossflow turbine for hydropower harvesting from water supply pipelines," Applied Energy, Elsevier, vol. 329(C).
    6. Ashraf Virk, Mati-ur-Rasool & Mysorewala, Muhammad Faizan & Cheded, Lahouari & Aliyu, AbdulRahman, 2022. "Review of energy harvesting techniques in wireless sensor-based pipeline monitoring networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    7. Huixiang Chen & Kan Kan & Haolan Wang & Maxime Binama & Yuan Zheng & Hui Xu, 2021. "Development and Numerical Performance Analysis of a Micro Turbine in a Tap-Water Pipeline," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    8. Hu, Yili & Yi, Zhiran & Dong, Xiaoxue & Mou, Fangxiao & Tian, Yingwei & Yang, Qinghai & Yang, Bin & Liu, Jingquan, 2019. "High power density energy harvester with non-uniform cantilever structure due to high average strain distribution," Energy, Elsevier, vol. 169(C), pages 294-304.
    9. Delgado, J. & Ferreira, J.P. & Covas, D.I.C. & Avellan, F., 2019. "Variable speed operation of centrifugal pumps running as turbines. Experimental investigation," Renewable Energy, Elsevier, vol. 142(C), pages 437-450.
    10. Li, Xiaoping & Yang, Qi & Xie, Xugang & Chen, Sihang & Pan, Chen & He, Zhouying & Gong, Jing & Hong, Bingyuan, 2023. "Spatiotemporal simulation of gas-liquid transport in the production process of continuous undulating pipelines," Energy, Elsevier, vol. 278(PA).
    11. Du, Jiyun & Ge, Zhan & Wu, Hao & Shi, Xudong & Yuan, Fangyang & Yu, Wei & Wang, Dongxiang & Yang, Xinjun, 2022. "Study on the effects of runner geometric parameters on the performance of micro Francis turbines used in water supply system of high-rise buildings," Energy, Elsevier, vol. 256(C).
    12. Zheng, Xianghao & Zhang, Suqi & Zhang, Yuning & Li, Jinwei & Zhang, Yuning, 2023. "Dynamic characteristic analysis of pressure pulsations of a pump turbine in turbine mode utilizing variational mode decomposition combined with Hilbert transform," Energy, Elsevier, vol. 280(C).
    13. Payambarpour, S. Abdolkarim & Najafi, Amir F. & Magagnato, Franco, 2020. "Investigation of deflector geometry and turbine aspect ratio effect on 3D modified in-pipe hydro Savonius turbine: Parametric study," Renewable Energy, Elsevier, vol. 148(C), pages 44-59.
    14. Gao, Jinjin & Liu, Han & Lee, Jiyong & Zheng, Yuan & Guala, Michele & Shen, Lian, 2022. "Large-eddy simulation and Co-Design strategy for a drag-type vertical axis hydrokinetic turbine in open channel flows," Renewable Energy, Elsevier, vol. 181(C), pages 1305-1316.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.