IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v183y2019icp25-34.html
   My bibliography  Save this article

Insights into pyrolysis and co-pyrolysis of tobacco stalk and scrap tire: Thermochemical behaviors, kinetics, and evolved gas analysis

Author

Listed:
  • Chen, Rongjie
  • Lun, Liyong
  • Cong, Kunlin
  • Li, Qinghai
  • Zhang, Yanguo

Abstract

In this study, the co-pyrolysis kinetics of tobacco stalk and scrap tire were investigated via thermogravimetric analyzer, while Fourier transform infrared spectrometer was used for the analysis of gas-phase products transition. The pyrolysis of tobacco stalk could be divided into three stages: moisture removal, volatile removal, and slow decomposition of residues. And there was an additional stage of the decomposition of additives for scrap tire. The positive interaction between tobacco stalk and scrap tire occurred when their ratio is 2:8, at which both differential thermal gravity peak temperatures reached a minimum of 320.5 and 390.7 °C in their corresponding regions. The size of the tire particles (from 250 μm to 3 mm) appeared to have little effect on the differential thermal gravity peak temperature of the mixtures. From the results of the kinetic analysis, the synergistic effect at multiple mixing ratios made the energy required for the co-pyrolysis process significantly lower than that of the single pyrolysis. Under the mixed conditions, the formation of organic gases and CO2 was suppressed, the possible mechanism involved was discussed. The results obtained in this study can be used to understand the co-pyrolysis of tobacco stalk/scrap tire and provide a basis for further industrial applications.

Suggested Citation

  • Chen, Rongjie & Lun, Liyong & Cong, Kunlin & Li, Qinghai & Zhang, Yanguo, 2019. "Insights into pyrolysis and co-pyrolysis of tobacco stalk and scrap tire: Thermochemical behaviors, kinetics, and evolved gas analysis," Energy, Elsevier, vol. 183(C), pages 25-34.
  • Handle: RePEc:eee:energy:v:183:y:2019:i:c:p:25-34
    DOI: 10.1016/j.energy.2019.06.127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219312599
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farooq, Muhammad Zohaib & Zeeshan, Muhammad & Iqbal, Saeed & Ahmed, Naveed & Shah, Syed Asfand Yar, 2018. "Influence of waste tire addition on wheat straw pyrolysis yield and oil quality," Energy, Elsevier, vol. 144(C), pages 200-206.
    2. Chattopadhyay, Jayeeta & Pathak, T.S. & Srivastava, R. & Singh, A.C., 2016. "Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis," Energy, Elsevier, vol. 103(C), pages 513-521.
    3. Leng, Lijian & Li, Hui & Yuan, Xingzhong & Zhou, Wenguang & Huang, Huajun, 2018. "Bio-oil upgrading by emulsification/microemulsification: A review," Energy, Elsevier, vol. 161(C), pages 214-232.
    4. Aysu, Tevfik & Küçük, M. Maşuk, 2014. "Biomass pyrolysis in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and characterization of products," Energy, Elsevier, vol. 64(C), pages 1002-1025.
    5. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    6. Wang, Jia & Zhong, Zhaoping & Ding, Kuan & Zhang, Bo & Deng, Aidong & Min, Min & Chen, Paul & Ruan, Roger, 2017. "Co-pyrolysis of bamboo residual with waste tire over dual catalytic stage of CaO and co-modified HZSM-5," Energy, Elsevier, vol. 133(C), pages 90-98.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bi, Rongshan & Zhang, Yan & Jiang, Xiao & Yang, Haixing & Yan, Kejia & Han, Min & Li, Wenhua & Zhong, Hua & Tan, Xinshun & Xia, Li & Sun, Xiaoyan & Xiang, Shuangguang, 2022. "Simulation and techno-economical analysis on the pyrolysis process of waste tire," Energy, Elsevier, vol. 260(C).
    2. Yao, Xiwen & Liu, Qinghua & Kang, Zijian & An, Zhixing & Zhou, Haodong & Xu, Kaili, 2023. "Quantitative study on thermal conversion behaviours and gas emission properties of biomass in nitrogen and in CO2/N2 mixtures by TGA/DTG and a fixed-bed tube furnace," Energy, Elsevier, vol. 270(C).
    3. Zhang, Menghui & Qi, Yongfeng & Zhang, Wan & Wang, Meiting & Li, Jingyi & Lu, Yi & Zhang, Sheng & He, Jiazheng & Cao, Hao & Tao, Xuan & Xu, Hanlu & Zhang, Sheng, 2024. "A review on waste tires pyrolysis for energy and material recovery from the optimization perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Gao, Qi & Ni, Liangmeng & He, Yuyu & Hou, Yanmei & Hu, Wanhe & Liu, Zhijia, 2022. "Effect of hydrothermal pretreatment on deashing and pyrolysis characteristics of bamboo shoot shells," Energy, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Seokhwan & Woo, Sang Hee & Kim, Yongrae & Choi, Young & Kang, Kernyong, 2020. "Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel," Energy, Elsevier, vol. 206(C).
    2. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    4. Leng, Lijian & Li, Tanghao & Zhan, Hao & Rizwan, Muhammad & Zhang, Weijin & Peng, Haoyi & Yang, Zequn & Li, Hailong, 2023. "Machine learning-aided prediction of nitrogen heterocycles in bio-oil from the pyrolysis of biomass," Energy, Elsevier, vol. 278(PB).
    5. Kawale, Harshal D. & Kishore, Nanda, 2020. "Comparative study on pyrolysis of Delonix Regia, Pinewood sawdust and their co-feed for plausible bio-fuels production," Energy, Elsevier, vol. 203(C).
    6. Liu, Rongtang & Liu, Ming & Fan, Peipei & Zhao, Yongliang & Yan, Junjie, 2018. "Thermodynamic study on a novel lignite poly-generation system of electricity-gas-tar integrated with pre-drying and pyrolysis," Energy, Elsevier, vol. 165(PB), pages 140-152.
    7. Kumar, R. & Strezov, V. & Weldekidan, H. & He, J. & Singh, S. & Kan, T. & Dastjerdi, B., 2020. "Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    8. Arabiourrutia, Miriam & Lopez, Gartzen & Artetxe, Maite & Alvarez, Jon & Bilbao, Javier & Olazar, Martin, 2020. "Waste tyre valorization by catalytic pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    9. Soares Dias, Ana Paula & Rego, Filipe & Fonseca, Frederico & Casquilho, Miguel & Rosa, Fátima & Rodrigues, Abel, 2019. "Catalyzed pyrolysis of SRC poplar biomass. Alkaline carbonates and zeolites catalysts," Energy, Elsevier, vol. 183(C), pages 1114-1122.
    10. Lizhen Qin & Donghoon Shin, 2023. "Effects of UV Light Treatment on Functional Group and Its Adsorption Capacity of Biochar," Energies, MDPI, vol. 16(14), pages 1-14, July.
    11. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    12. JoungDu Shin & SangWon Park & Changyoon Jeong, 2020. "Assessment of Agro-Environmental Impacts for Supplemented Methods to Biochar Manure Pellets during Rice ( Oryza sativa L.) Cultivation," Energies, MDPI, vol. 13(8), pages 1-14, April.
    13. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    14. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    15. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    16. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    17. Shao, Shanshan & Zhang, Pengfei & Xiang, Xianliang & Li, Xiaohua & Zhang, Huiyan, 2022. "Promoted ketonization of bagasse pyrolysis gas over red mud-based oxides," Renewable Energy, Elsevier, vol. 190(C), pages 11-18.
    18. Alsulami, Radi A. & El-Sayed, Saad A. & Eltaher, Mohamed A. & Mohammad, Akram & Almitani, Khalid H. & Mostafa, Mohamed E., 2023. "Pyrolysis kinetics and thermal degradation characteristics of coffee, date seed, and prickly pear wastes and their blends," Renewable Energy, Elsevier, vol. 216(C).
    19. Wang, Chu & Yuan, Xinhua & Li, Shanshan & Zhu, Xifeng, 2021. "Enrichment of phenolic products in walnut shell pyrolysis bio-oil by combining torrefaction pretreatment with fractional condensation," Renewable Energy, Elsevier, vol. 169(C), pages 1317-1329.
    20. Sitek, Tomáš & Pospíšil, Jiří & Poláčik, Ján & Špiláček, Michal & Varbanov, Petar, 2019. "Fine combustion particles released during combustion of unit mass of beechwood," Renewable Energy, Elsevier, vol. 140(C), pages 390-396.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:183:y:2019:i:c:p:25-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.