IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p1334-d1585184.html
   My bibliography  Save this article

Enhancing Environmental Sustainability in the Coffee Processing Industry via Energy Recovery and Optimization: A Life Cycle Assessment Case Study

Author

Listed:
  • Tryfon Kekes

    (Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, 15780 Athens, Greece)

  • Sokratis Emmanouil Koskinakis

    (Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, 15780 Athens, Greece)

  • Christos Boukouvalas

    (Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, 15780 Athens, Greece)

  • Magdalini Krokida

    (Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, 15780 Athens, Greece)

Abstract

The coffee processing industry is amongst the most energy-intensive industrial sectors, with the roasting process requiring substantial quantities of energy. To enhance sustainability, various energy optimization and recovery methods have been proposed. This study evaluates the environmental benefits of integrating energy recovery techniques in a typical coffee processing industry using a Life Cycle Assessment (LCA) approach. Specifically, two alternative scenarios were compared to a baseline processing line; (i) Scenario A, which involves recycling hot air streams to reduce natural gas consumption, and (ii) Scenario B, which utilizes an Organic Rankine Cycle (ORC) to convert waste heat to electricity. The LCA analysis indicated that Scenario A achieved a 25% reduction in greenhouse gas emissions and an 18% decrease in fossil fuel use. Scenario B demonstrated even greater environmental benefits, with a 40% reduction in greenhouse gas emissions and a 36% decrease in fossil fuel depletion. These findings underline the potential of integrating energy recovery technologies to enhance the sustainability of coffee production, offering valuable insights for industry stakeholders and researchers focused on sustainable manufacturing practices.

Suggested Citation

  • Tryfon Kekes & Sokratis Emmanouil Koskinakis & Christos Boukouvalas & Magdalini Krokida, 2025. "Enhancing Environmental Sustainability in the Coffee Processing Industry via Energy Recovery and Optimization: A Life Cycle Assessment Case Study," Sustainability, MDPI, vol. 17(3), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1334-:d:1585184
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/1334/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/1334/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wallerand, Anna S. & Kermani, Maziar & Kantor, Ivan & Maréchal, François, 2018. "Optimal heat pump integration in industrial processes," Applied Energy, Elsevier, vol. 219(C), pages 68-92.
    2. Eric Rahn & Peter Läderach & María Baca & Charlotte Cressy & Götz Schroth & Daniella Malin & Henk Rikxoort & Jefferson Shriver, 2014. "Climate change adaptation, mitigation and livelihood benefits in coffee production: where are the synergies?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(8), pages 1119-1137, December.
    3. Diana L. Tinoco Caicedo & Myrian Santos Torres & Medelyne Mero-Benavides & Oscar Patiño Lopez & Alexis Lozano Medina & Ana M. Blanco Marigorta, 2023. "Simulation and Exergoeconomic Analysis of a Trigeneration System Based on Biofuels from Spent Coffee Grounds," Energies, MDPI, vol. 16(4), pages 1-17, February.
    4. Mladen Bošnjaković & Robert Santa & Marko Katinić, 2023. "Experimental Testing of a Water-to-Water Heat Pump with and without IHX by Using Refrigerants R1234yf and R1234ze(E)," Sustainability, MDPI, vol. 15(11), pages 1-28, May.
    5. van Kleef, Luuk M.T. & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2019. "Multi-objective thermo-economic optimization of organic Rankine cycle (ORC) power systems in waste-heat recovery applications using computer-aided molecular design techniques," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Hugo Sakamoto & Larissa Thaís Bruschi & Luiz Kulay & Akebo Yamakami, 2023. "Using the Life Cycle Approach for Multiobjective Optimization in the Context of the Green Supply Chain: A Case Study of Brazilian Coffee," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Chonghui & Xing, Lingli & Su, Wen & Lin, Xinxing, 2023. "Performance prediction and design of CO2 mixtures with the PR-VDW model and molecular groups for the transcritical power cycle," Energy, Elsevier, vol. 282(C).
    2. Liu, Hua & Zhao, Baiyang & Zhang, Zhiping & Li, Hongbo & Hu, Bin & Wang, R.Z., 2020. "Experimental validation of an advanced heat pump system with high-efficiency centrifugal compressor," Energy, Elsevier, vol. 213(C).
    3. Ebrahimi-Moghadam, Amir & Farzaneh-Gord, Mahmood, 2022. "Optimal operation of a multi-generation district energy hub based on electrical, heating, and cooling demands and hydrogen production," Applied Energy, Elsevier, vol. 309(C).
    4. Zhao, Yi & Hagi, Hayato & Delahaye, Bruno & Maréchal, François, 2024. "A holistic approach to refinery decarbonization based on atomic, energy and exergy flow analysis," Energy, Elsevier, vol. 296(C).
    5. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2021. "Energy equipment sizing and operation optimisation for prosumer industrial SMEs – A lifetime approach," Applied Energy, Elsevier, vol. 299(C).
    7. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 270(C).
    8. Parisa Heidarnejad & Hadi Genceli & Nasim Hashemian & Mustafa Asker & Mohammad Al-Rawi, 2024. "Biomass-Fueled Organic Rankine Cycles: State of the Art and Future Trends," Energies, MDPI, vol. 17(15), pages 1-30, August.
    9. Gibb, Duncan & Johnson, Maike & Romaní, Joaquim & Gasia, Jaume & Cabeza, Luisa F. & Seitz, Antje, 2018. "Process integration of thermal energy storage systems – Evaluation methodology and case studies," Applied Energy, Elsevier, vol. 230(C), pages 750-760.
    10. Schilling, J. & Entrup, M. & Hopp, M. & Gross, J. & Bardow, A., 2021. "Towards optimal mixtures of working fluids: Integrated design of processes and mixtures for Organic Rankine Cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Schlosser, Florian & Seevers, Jan-Peter & Peesel, Ron-Hendrik & Walmsley, Timothy Gordon, 2019. "System efficient integration of standby control and heat pump storage systems in manufacturing processes," Energy, Elsevier, vol. 181(C), pages 395-406.
    12. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic comparison of green ammonia production processes," Applied Energy, Elsevier, vol. 259(C).
    13. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2021. "Techno-economic comparison of 100% renewable urea production processes," Applied Energy, Elsevier, vol. 284(C).
    14. Shi, Shaofei & Wang, Yufei & Wang, Youlei & Feng, Xiao, 2022. "A new optimization method for cooling systems considering low-temperature waste heat utilization in a polysilicon industry," Energy, Elsevier, vol. 238(PA).
    15. Ota, Liz & Herbohn, John & Gregorio, Nestor & Harrison, Steve, 2020. "Reforestation and smallholder livelihoods in the humid tropics," Land Use Policy, Elsevier, vol. 92(C).
    16. Luu, Minh Tri & Milani, Dia & Nomvar, Mobin & Abbas, Ali, 2020. "A design protocol for enhanced discharge exergy in phase change material heat battery," Applied Energy, Elsevier, vol. 265(C).
    17. Mai Phuong Nguyen & Philippe Vaast & Tim Pagella & Fergus Sinclair, 2020. "Local Knowledge about Ecosystem Services Provided by Trees in Coffee Agroforestry Practices in Northwest Vietnam," Land, MDPI, vol. 9(12), pages 1-27, December.
    18. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    19. Elsa Klinac & James Kenneth Carson & Duy Hoang & Qun Chen & Donald John Cleland & Timothy Gordon Walmsley, 2023. "Multi-Level Process Integration of Heat Pumps in Meat Processing," Energies, MDPI, vol. 16(8), pages 1-16, April.
    20. Ikeda, Shintaro & Ooka, Ryozo, 2019. "Application of differential evolution-based constrained optimization methods to district energy optimization and comparison with dynamic programming," Applied Energy, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1334-:d:1585184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.