IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v181y2019icp214-225.html
   My bibliography  Save this article

Synthesis of heat integrated processing systems taking into account reliability

Author

Listed:
  • Orosz, Ákos
  • Kovács, Zoltán
  • Friedler, Ferenc

Abstract

Because of the ever increasing complexity of processing systems, the reliability becomes a key aspect in selecting the best process during process design. This is especially crucial if heat integration is also part of process design, because it increases the complexity of the system that may reduce its reliability. Since the selection of a process network during synthesis has major influence on the cost, the reliability, and the level of heat integration, these three items must be considered simultaneously in process synthesis. To do so, a general modeling tool is required that simultaneously covers all three areas. In the present work, three formerly developed modeling tools and solution procedures are adapted and integrated, all of them are related to the P-graph framework. Because of their common basis, their integration is natural and highly effective. In addition to the three aspects considered here in synthesizing a process, there are further features to be considered in the final selection of the best process during process design (e.g., controllability and sustainability). The capability of the method in generating all or the n-best networks serves this purpose.

Suggested Citation

  • Orosz, Ákos & Kovács, Zoltán & Friedler, Ferenc, 2019. "Synthesis of heat integrated processing systems taking into account reliability," Energy, Elsevier, vol. 181(C), pages 214-225.
  • Handle: RePEc:eee:energy:v:181:y:2019:i:c:p:214-225
    DOI: 10.1016/j.energy.2019.05.173
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219310552
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamsani, Muhammad Nurheilmi & Walmsley, Timothy Gordon & Liew, Peng Yen & Wan Alwi, Sharifah Rafidah, 2018. "Combined Pinch and exergy numerical analysis for low temperature heat exchanger network," Energy, Elsevier, vol. 153(C), pages 100-112.
    2. Z. Kovacs & A. Orosz & F. Friedler, 2019. "Synthesis algorithms for the reliability analysis of processing systems," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 573-595, June.
    3. Gadalla, Mamdouh A., 2015. "A new graphical method for Pinch Analysis applications: Heat exchanger network retrofit and energy integration," Energy, Elsevier, vol. 81(C), pages 159-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hafizan, Ainur Munirah & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abd & Klemeš, Jiří Jaromír & Abd Hamid, Mohd Kamaruddin, 2020. "Design of optimal heat exchanger network with fluctuation probability using break-even analysis," Energy, Elsevier, vol. 212(C).
    2. Cabral, Charlette & Andiappan, Viknesh & Aviso, Kathleen & Tan, Raymond, 2021. "Equipment size selection for optimizing polygeneration systems with reliability aspects," Energy, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    2. Liu, Jian & Xu, Yantao & Zhang, Yaning & Shuai, Yong & Li, Bingxi, 2022. "Multi-objective optimization of low temperature cooling water organic Rankine cycle using dual pinch point temperature difference technologies," Energy, Elsevier, vol. 240(C).
    3. Wang, Jingyi & Wang, Zhe & Zhou, Ding & Sun, Kaiyu, 2019. "Key issues and novel optimization approaches of industrial waste heat recovery in district heating systems," Energy, Elsevier, vol. 188(C).
    4. Wang, Yufei & Zhan, Shihui & Feng, Xiao, 2015. "Optimization of velocity for energy saving and mitigating fouling in a crude oil preheat train with fixed network structure," Energy, Elsevier, vol. 93(P2), pages 1478-1488.
    5. Lincoln, Benjamin James & Kong, Lana & Pineda, Alyssa Mae & Walmsley, Timothy Gordon, 2022. "Process integration and electrification for efficient milk evaporation systems," Energy, Elsevier, vol. 258(C).
    6. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    7. Chin, Hon Huin & Wang, Bohong & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Zeng, Min & Wang, Qiu-Wang, 2020. "Long-term investment and maintenance planning for heat exchanger network retrofit," Applied Energy, Elsevier, vol. 279(C).
    8. de Raad, Brendon & van Lieshout, Marit & Stougie, Lydia & Ramirez, Andrea, 2024. "Improving plant-level heat pump performance through process modifications," Applied Energy, Elsevier, vol. 358(C).
    9. Wang, Zhe & Cai, Wenjian & Han, Fenghui & Ji, Yulong & Li, Wenhua & Sundén, Bengt, 2019. "Feasibility study on a novel heat exchanger network for cryogenic liquid regasification with cooling capacity recovery: Theoretical and experimental assessments," Energy, Elsevier, vol. 181(C), pages 771-781.
    10. Sadeghian Jahromi, Farid & Beheshti, Masoud, 2017. "An extended energy saving method for modification of MTP process heat exchanger network," Energy, Elsevier, vol. 140(P1), pages 1059-1073.
    11. Zhang, B.J. & Li, J. & Zhang, Z.L. & Wang, K. & Chen, Q.L., 2016. "Simultaneous design of heat exchanger network for heat integration using hot direct discharges/feeds between process plants," Energy, Elsevier, vol. 109(C), pages 400-411.
    12. Lai, Yee Qing & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul, 2020. "Graphical customisation of process and utility changes for heat exchanger network retrofit using individual stream temperature versus enthalpy plot," Energy, Elsevier, vol. 203(C).
    13. Kamel, Dina A. & Gadalla, Mamdouh A. & Abdelaziz, Omar Y. & Labib, Mennat A. & Ashour, Fatma H., 2017. "Temperature driving force (TDF) curves for heat exchanger network retrofit – A case study and implications," Energy, Elsevier, vol. 123(C), pages 283-295.
    14. Aboelazayem, Omar & Gadalla, Mamdouh & Saha, Basudeb, 2018. "Design and simulation of an integrated process for biodiesel production from waste cooking oil using supercritical methanolysis," Energy, Elsevier, vol. 161(C), pages 299-307.
    15. Akpomiemie, Mary O. & Smith, Robin, 2018. "Cost-effective strategy for heat exchanger network retrofit," Energy, Elsevier, vol. 146(C), pages 82-97.
    16. Ibrić, Nidret & Ahmetović, Elvis & Kravanja, Zdravko & Maréchal, François & Kermani, Maziar, 2017. "Simultaneous synthesis of non-isothermal water networks integrated with process streams," Energy, Elsevier, vol. 141(C), pages 2587-2612.
    17. Zhi, Keke & Wang, Bohong & Guo, Lianghui & Chen, Yujie & Li, Wei & Ocłoń, Paweł & Wang, Jin & Chen, Yuping & Tao, Hengcong & Li, Xinze & Varbanov, Petar Sabev, 2024. "Graphical pinch analysis-based method for heat exchanger networks retrofit of a residuum hydrogenation process," Energy, Elsevier, vol. 299(C).
    18. Miguel Castro Oliveira & Muriel Iten & Henrique A. Matos, 2022. "Review on Water and Energy Integration in Process Industry: Water-Heat Nexus," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    19. Fu, Chao & Gundersen, Truls, 2016. "Correct integration of compressors and expanders in above ambient heat exchanger networks," Energy, Elsevier, vol. 116(P2), pages 1282-1293.
    20. Lai, Yee Qing & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul, 2019. "Customised retrofit of heat exchanger network combining area distribution and targeted investment," Energy, Elsevier, vol. 179(C), pages 1054-1066.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:181:y:2019:i:c:p:214-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.