IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v250y2022ics0360544222006934.html
   My bibliography  Save this article

Total site exergy analysis, using a new conceptual method

Author

Listed:
  • Mehdizadeh, Fariba
  • Tahouni, Nassim
  • Panjeshahi, M. Hassan

Abstract

In this research, a new graphical tool entitled Omega Total Site Profile (OTSP) is introduced to simply calculate the exergy destruction and losses within a total site. This new diagram is obtained by the development of Omega Composite Curves (OCC) used for exergy destruction and loss calculations within an individual process. The OTSP diagram is linear and the enclosed area between process and utility streams has a rectangular shape and shows the thermal exergy destruction and losses within a total site. Having combined the new diagram with a mathematical optimization like Genetic Algorithm, a method to a new design or retrofit a total site is presented. Next, two case studies are used to demonstrate the performance of the proposed diagram and the optimization procedure. In the first total site case study by considering flexible temperature levels for utilities, the optimum scheme resulted in 14.6% and 24% lower exergy destruction and losses compared to the current design with fixed temperature levels for utilities. In the second total site case study, by considering three temperature levels of utilities, the optimum heat recovery design resulted in 24% lower exergy destruction and losses compared to the base case.

Suggested Citation

  • Mehdizadeh, Fariba & Tahouni, Nassim & Panjeshahi, M. Hassan, 2022. "Total site exergy analysis, using a new conceptual method," Energy, Elsevier, vol. 250(C).
  • Handle: RePEc:eee:energy:v:250:y:2022:i:c:s0360544222006934
    DOI: 10.1016/j.energy.2022.123790
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222006934
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123790?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panjeshahi, M.H. & Ghasemian Langeroudi, E. & Tahouni, N., 2008. "Retrofit of ammonia plant for improving energy efficiency," Energy, Elsevier, vol. 33(1), pages 46-64.
    2. Perry, Simon & Klemeš, Jiří & Bulatov, Igor, 2008. "Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors," Energy, Elsevier, vol. 33(10), pages 1489-1497.
    3. Sardarmehni, Mojtaba & Tahouni, Nassim & Panjeshahi, M. Hassan, 2017. "Benchmarking of olefin plant cold-end for shaft work consumption, using process integration concepts," Energy, Elsevier, vol. 127(C), pages 623-633.
    4. Hamsani, Muhammad Nurheilmi & Walmsley, Timothy Gordon & Liew, Peng Yen & Wan Alwi, Sharifah Rafidah, 2018. "Combined Pinch and exergy numerical analysis for low temperature heat exchanger network," Energy, Elsevier, vol. 153(C), pages 100-112.
    5. Hackl, Roman & Harvey, Simon, 2013. "Applying exergy and total site analysis for targeting refrigeration shaft power in industrial clusters," Energy, Elsevier, vol. 55(C), pages 5-14.
    6. Pirmohamadi, Alireza & Ghazi, Mehrangiz & Nikian, Mohammad, 2019. "Optimal design of cogeneration systems in total site using exergy approach," Energy, Elsevier, vol. 166(C), pages 1291-1302.
    7. Tarighaleslami, Amir H. & Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Neale, James R., 2017. "Total Site Heat Integration: Utility selection and optimisation using cost and exergy derivative analysis," Energy, Elsevier, vol. 141(C), pages 949-963.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boldyryev, Stanislav & Gil, Tatyana & Krajačić, Goran & Khussanov, Alisher, 2023. "Total site targeting with the simultaneous use of intermediate utilities and power cogeneration at the polymer plant," Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    2. Khairulnadzmi Jamaluddin & Sharifah Rafidah Wan Alwi & Khaidzir Hamzah & Jiří Jaromír Klemeš, 2020. "A Numerical Pinch Analysis Methodology for Optimal Sizing of a Centralized Trigeneration System with Variable Energy Demands," Energies, MDPI, vol. 13(8), pages 1-35, April.
    3. Khairulnadzmi Jamaluddin & Sharifah Rafidah Wan Alwi & Zainuddin Abdul Manan & Khaidzir Hamzah & Jiří Jaromír Klemeš, 2019. "A Process Integration Method for Total Site Cooling, Heating and Power Optimisation with Trigeneration Systems," Energies, MDPI, vol. 12(6), pages 1-34, March.
    4. Bertrand, Alexandre & Mian, Alberto & Kantor, Ivan & Aggoune, Riad & Maréchal, François, 2019. "Regional waste heat valorisation: A mixed integer linear programming method for energy service companies," Energy, Elsevier, vol. 167(C), pages 454-468.
    5. Boldyryev, Stanislav & Shamraev, Anatoly A. & Shamraeva, Elena O., 2021. "The design of the total site exchanger network with intermediate heat carriers: Theoretical insights and practical application," Energy, Elsevier, vol. 223(C).
    6. Jamaluddin, Khairulnadzmi & Wan Alwi, Sharifah Rafidah & Abd Manan, Zainuddin & Hamzah, Khaidzir & Klemeš, Jiří Jaromír, 2022. "Design of Total Site-Integrated TrigenerationSystem using trigeneration cascade analysis considering transmission losses and sensitivity analysis," Energy, Elsevier, vol. 252(C).
    7. Hackl, Roman & Harvey, Simon, 2013. "Framework methodology for increased energy efficiency and renewable feedstock integration in industrial clusters," Applied Energy, Elsevier, vol. 112(C), pages 1500-1509.
    8. Boldyryev, Stanislav & Gil, Tatyana & Krajačić, Goran & Khussanov, Alisher, 2023. "Total site targeting with the simultaneous use of intermediate utilities and power cogeneration at the polymer plant," Energy, Elsevier, vol. 279(C).
    9. Mei-Ling, Zheng & Wen, Wang, 2010. "Seasonal energy utilization optimization in an enterprise," Energy, Elsevier, vol. 35(9), pages 3932-3940.
    10. Matsuda, Kazuo & Hirochi, Yoshiichi & Kurosaki, Daisuke & Kado, Yosuke, 2015. "Area-wide energy saving program in a large industrial area," Energy, Elsevier, vol. 90(P1), pages 89-94.
    11. Zhang, Bing J. & Tang, Qiao Q. & Zhao, Yue & Chen, Yu Q. & Chen, Qing L. & Floudas, Christodoulos A., 2018. "Multi-level energy integration between units, plants and sites for natural gas industrial parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 1-15.
    12. Faramarzi, Simin & Tahouni, Nassim & Panjeshahi, M. Hassan, 2022. "Pressure drop optimization in Total Site targeting - A more realistic approach to energy- capital trade-off," Energy, Elsevier, vol. 251(C).
    13. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    14. Varbanov, Petar Sabev & Fodor, Zsófia & Klemeš, Jiří Jaromír, 2012. "Total Site targeting with process specific minimum temperature difference (ΔTmin)," Energy, Elsevier, vol. 44(1), pages 20-28.
    15. Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
    16. Liu, Jian & Xu, Yantao & Zhang, Yaning & Shuai, Yong & Li, Bingxi, 2022. "Multi-objective optimization of low temperature cooling water organic Rankine cycle using dual pinch point temperature difference technologies," Energy, Elsevier, vol. 240(C).
    17. Back, Jaime André & Tedesco, Leonel Pablo & Molz, Rolf Fredi & Nara, Elpidio Oscar Benitez, 2016. "An embedded system approach for energy monitoring and analysis in industrial processes," Energy, Elsevier, vol. 115(P1), pages 811-819.
    18. Michalsky, Ronald & Parman, Bryon J. & Amanor-Boadu, Vincent & Pfromm, Peter H., 2012. "Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses," Energy, Elsevier, vol. 42(1), pages 251-260.
    19. Amiri, Hamed & Sotoodeh, Amir Farhang & Amidpour, Majid, 2021. "A new combined heating and power system driven by biomass for total-site utility applications," Renewable Energy, Elsevier, vol. 163(C), pages 1138-1152.
    20. Klemeš, Jiří Jaromír & Kravanja, Zdravko & Varbanov, Petar Sabev & Lam, Hon Loong, 2013. "Advanced multimedia engineering education in energy, process integration and optimisation," Applied Energy, Elsevier, vol. 101(C), pages 33-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:250:y:2022:i:c:s0360544222006934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.