IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v180y2019icp1008-1018.html
   My bibliography  Save this article

Study on dynamic characteristics of intake system and combustion of controllable intake swirl diesel engine

Author

Listed:
  • Wang, Guixin
  • Yu, Wenbin
  • Li, Xiaobo
  • Su, Yanpan
  • Yang, Rui
  • Wu, Wentao

Abstract

This paper investigated the intake flow field of a controllable intake swirl diesel engine using computational fluid dynamics (CFD) methodology. It can be observed that the variation of the intake swirl with the opening of the intake baffle shows the two-stage characteristics, while the baffle opening angle of 48° is as a cut-off point. Through the comprehensive analysis of the influence of valve lift and baffle opening angle on flow coefficient, it is concluded that the influence of valve lift on flow coefficient is more sensitive. A mathematical method is used to fit the formula which can calculate the key characteristics of the controllable intake swirl diesel engine. Meanwhile the influence of the swirl ratio on combustion characteristics is investigated. It can be concluded that the swirl ratio has greater influence on the power performance of the diesel engine. When the swirl ratio increases from 0.4 to 1.2, the power performance is increased by 5.79%, and the fuel consumption was also improved. Finally, according to the actual structure of the intake system of diesel engine, a steady-state intake flow test bed was established to verify the accuracy of CFD study of the intake system.

Suggested Citation

  • Wang, Guixin & Yu, Wenbin & Li, Xiaobo & Su, Yanpan & Yang, Rui & Wu, Wentao, 2019. "Study on dynamic characteristics of intake system and combustion of controllable intake swirl diesel engine," Energy, Elsevier, vol. 180(C), pages 1008-1018.
  • Handle: RePEc:eee:energy:v:180:y:2019:i:c:p:1008-1018
    DOI: 10.1016/j.energy.2019.05.162
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219310448
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tianyou Wang & Daming Liu & Gangde Wang & Bingqian Tan & Zhijun Peng, 2015. "Effects of Variable Valve Lift on In-Cylinder Air Motion," Energies, MDPI, vol. 8(12), pages 1-18, December.
    2. Basha, Syed Ameer & Raja Gopal, K., 2009. "In-cylinder fluid flow, turbulence and spray models--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1620-1627, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jemni, Mohamed Ali & Kantchev, Gueorgui & Abid, Mohamed Salah, 2011. "Influence of intake manifold design on in-cylinder flow and engine performances in a bus diesel engine converted to LPG gas fuelled, using CFD analyses and experimental investigations," Energy, Elsevier, vol. 36(5), pages 2701-2715.
    2. Yue Wang & Xin Zhang & Xinmiao Fan & Yanfei Li, 2023. "Simulation and Research of Methane Premixed Combustion Characteristics Based on Constant Volume Combustion Chamber with Different Ignition Modes," Energies, MDPI, vol. 16(20), pages 1-21, October.
    3. Xun Yang & Teng Xiong & Jing Liang Dong & Wen Xin Li & Yong Wang, 2017. "Investigation of the Dynamic Melting Process in a Thermal Energy Storage Unit Using a Helical Coil Heat Exchanger," Energies, MDPI, vol. 10(8), pages 1-18, August.
    4. Ali Raza & Hassan Mehboob & Sajjad Miran & Waseem Arif & Syed Farukh Javaid Rizvi, 2020. "Investigation on the Characteristics of Biodiesel Droplets in the Engine Cylinder," Energies, MDPI, vol. 13(14), pages 1-14, July.
    5. Simone Sparacino & Fabio Berni & Alessandro d’Adamo & Vesselin Krassimirov Krastev & Andrea Cavicchi & Lucio Postrioti, 2019. "Impact of the Primary Break-Up Strategy on the Morphology of GDI Sprays in 3D-CFD Simulations of Multi-Hole Injectors," Energies, MDPI, vol. 12(15), pages 1-24, July.
    6. Simona Silvia Merola & Adrian Irimescu & Silvana Di Iorio & Bianca Maria Vaglieco, 2017. "Effect of Fuel Injection Strategy on the Carbonaceous Structure Formation and Nanoparticle Emission in a DISI Engine Fuelled with Butanol," Energies, MDPI, vol. 10(7), pages 1-19, June.
    7. Santiago Martinez & Adrian Irimescu & Simona Silvia Merola & Pedro Lacava & Pedro Curto-Riso, 2017. "Flame Front Propagation in an Optical GDI Engine under Stoichiometric and Lean Burn Conditions," Energies, MDPI, vol. 10(9), pages 1-23, September.
    8. Yindong Song & Yiyu Xu & Xiuwei Cheng & Ziyu Wang & Weiqing Zhu & Xinyu Fan, 2022. "Using a Genetic Algorithm to Achieve Optimal Matching between PMEP and Diameter of Intake and Exhaust Throat of a High-Boost-Ratio Engine," Energies, MDPI, vol. 15(5), pages 1-17, February.
    9. Qian, Yong & Yu, Liang & Li, Zilong & Zhang, Yahui & Xu, Leilei & Zhou, Qiyan & Han, Dong & Lu, Xingcai, 2018. "A new methodology for diesel surrogate fuel formulation: Bridging fuel fundamental properties and real engine combustion characteristics," Energy, Elsevier, vol. 148(C), pages 424-447.
    10. Zahra S. Musavi & Henrik Kusar & Robert Andersson & Klas Engvall, 2018. "Modelling and Optimization of a Small Diesel Burner for Mobile Applications," Energies, MDPI, vol. 11(11), pages 1-21, October.
    11. Chen, Yangyang & Liu, Aodong & Deng, Banglin & Xu, Zhenxin & Feng, Renhua & Fu, Jianqin & Liu, Xiaoqiang & Zhang, Guoqing & Zhou, Lili, 2019. "The influences of ignition modes on the performances for a motorcycle single cylinder gasoline engine at lean burn operation: Looking inside interaction between flame front and turbulence," Energy, Elsevier, vol. 179(C), pages 528-541.
    12. Jie Pan & Junfang Ma & Junyin Li & Hongzhe Liu & Jing Wei & Jingjing Xu & Tao Zhu & Hairui Zhang & Wei Li & Jiaying Pan, 2022. "Influence of Intake Port Structure on the Performance of a Spark-Ignited Natural Gas Engine," Energies, MDPI, vol. 15(22), pages 1-13, November.
    13. Zhang, Wei & Chen, Zhaohui & Duan, Qiwang & Jiang, Qianyu, 2021. "Visual test and evolutionary analysis of flow fields in cylinder of helical intake port diesel engine," Energy, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:180:y:2019:i:c:p:1008-1018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.