IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v165y2018ipap205-221.html
   My bibliography  Save this article

A cyber-physical-social system with parallel learning for distributed energy management of a microgrid

Author

Listed:
  • Zhang, Xiaoshun
  • Yu, Tao
  • Xu, Zhao
  • Fan, Zhun

Abstract

A novel cyber-physical-social system (CPSS) with parallel learning is presented for distributed energy management (DEM) of a microgrid. CPSS is developed by extending the conventional cyber-physical system to the social space with human participation and interaction. Each energy supplier or each energy demander is regarded as a human in the social space, who is able to learn the knowledge, co-operate with others, and make a decision with various preference behaviors. The correlated equilibrium (CE) based general-sum game is employed for realizing the human interaction on the complex optimization subtask, while the novel adaptive consensus algorithm is used for achieving that on the simple optimization subtask with multi-energy balance constraints. A real-world system and multiple virtual artificial systems are introduced for parallel and interactive execution based on the small world network, thus a higher quality optimum of DEM can be rapidly emerged with a high probability. Case studies of a microgrid with 11 energy suppliers and 7 energy demanders demonstrate that the proposed technique can effectively achieve the human-computer collaboration and rapidly obtain a higher quality optimum of DEM compared with other centralized heuristic algorithms.

Suggested Citation

  • Zhang, Xiaoshun & Yu, Tao & Xu, Zhao & Fan, Zhun, 2018. "A cyber-physical-social system with parallel learning for distributed energy management of a microgrid," Energy, Elsevier, vol. 165(PA), pages 205-221.
  • Handle: RePEc:eee:energy:v:165:y:2018:i:pa:p:205-221
    DOI: 10.1016/j.energy.2018.09.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218318334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.09.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Xinli & Ma, Shihao & Yang, Qiang & Zhang, Jintao, 2016. "Cooperative energy dispatch for multiple autonomous microgrids with distributed renewable sources and storages," Energy, Elsevier, vol. 99(C), pages 48-57.
    2. Secui, Dinu Calin, 2015. "The chaotic global best artificial bee colony algorithm for the multi-area economic/emission dispatch," Energy, Elsevier, vol. 93(P2), pages 2518-2545.
    3. Subbaraj, P. & Rengaraj, R. & Salivahanan, S., 2009. "Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm," Applied Energy, Elsevier, vol. 86(6), pages 915-921, June.
    4. Yousefi, Shaghayegh & Moghaddam, Mohsen Parsa & Majd, Vahid Johari, 2011. "Optimal real time pricing in an agent-based retail market using a comprehensive demand response model," Energy, Elsevier, vol. 36(9), pages 5716-5727.
    5. Beigvand, Soheil Derafshi & Abdi, Hamdi & La Scala, Massimo, 2017. "Hybrid Gravitational Search Algorithm-Particle Swarm Optimization with Time Varying Acceleration Coefficients for large scale CHPED problem," Energy, Elsevier, vol. 126(C), pages 841-853.
    6. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems)," Energy, Elsevier, vol. 55(C), pages 1044-1054.
    7. Guzzi, Francesco & Neves, Diana & Silva, Carlos A., 2017. "Integration of smart grid mechanisms on microgrids energy modelling," Energy, Elsevier, vol. 129(C), pages 321-330.
    8. Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
    9. Gamarra, Carlos & Guerrero, Josep M., 2015. "Computational optimization techniques applied to microgrids planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 413-424.
    10. Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2016. "Energy Internet: The business perspective," Applied Energy, Elsevier, vol. 178(C), pages 212-222.
    11. Yang, Bo & Yu, Tao & Shu, Hongchun & Dong, Jun & Jiang, Lin, 2018. "Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers," Applied Energy, Elsevier, vol. 210(C), pages 711-723.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kansha, Yasuki & Ishizuka, Masanori, 2019. "Design of energy harvesting wireless sensors using magnetic phase transition," Energy, Elsevier, vol. 180(C), pages 1001-1007.
    2. Wang, Huaizhi & Meng, Anjian & Liu, Yitao & Fu, Xueqian & Cao, Guangzhong, 2019. "Unscented Kalman Filter based interval state estimation of cyber physical energy system for detection of dynamic attack," Energy, Elsevier, vol. 188(C).
    3. Li, Yunfeng & Xue, Wenli & Wu, Ting & Wang, Huaizhi & Zhou, Bin & Aziz, Saddam & He, Yang, 2021. "Intrusion detection of cyber physical energy system based on multivariate ensemble classification," Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kneiske, T.M. & Braun, M. & Hidalgo-Rodriguez, D.I., 2018. "A new combined control algorithm for PV-CHP hybrid systems," Applied Energy, Elsevier, vol. 210(C), pages 964-973.
    2. Li, Xiao Hui & Hong, Seung Ho, 2014. "User-expected price-based demand response algorithm for a home-to-grid system," Energy, Elsevier, vol. 64(C), pages 437-449.
    3. Li, Qiang & Gao, Mengkai & Lin, Houfei & Chen, Ziyu & Chen, Minyou, 2019. "MAS-based distributed control method for multi-microgrids with high-penetration renewable energy," Energy, Elsevier, vol. 171(C), pages 284-295.
    4. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Yang, Shanlin, 2020. "A robust optimization approach for coordinated operation of multiple energy hubs," Energy, Elsevier, vol. 197(C).
    5. Paramjeet Kaur & Krishna Teerth Chaturvedi & Mohan Lal Kolhe, 2023. "Combined Heat and Power Economic Dispatching within Energy Network using Hybrid Metaheuristic Technique," Energies, MDPI, vol. 16(3), pages 1-17, January.
    6. Dashti, Reza & Yousefi, Shaghayegh & Parsa Moghaddam, Mohsen, 2013. "Comprehensive efficiency evaluation model for electrical distribution system considering social and urban factors," Energy, Elsevier, vol. 60(C), pages 53-61.
    7. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    8. Basu, M., 2023. "Multi-county combined heat and power dynamic economic emission dispatch incorporating electric vehicle parking lot," Energy, Elsevier, vol. 275(C).
    9. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & Gharehpetian, G.B., 2018. "A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2128-2143.
    10. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    11. Zhao Luo & Wei Gu & Yong Sun & Xiang Yin & Yiyuan Tang & Xiaodong Yuan, 2016. "Performance Analysis of the Combined Operation of Interconnected-BCCHP Microgrids in China," Sustainability, MDPI, vol. 8(10), pages 1-20, September.
    12. Lin, Chenhao & Liang, Huijun & Pang, Aokang, 2023. "A fast data-driven optimization method of multi-area combined economic emission dispatch," Applied Energy, Elsevier, vol. 337(C).
    13. Zou, Dexuan & Li, Steven & Kong, Xiangyong & Ouyang, Haibin & Li, Zongyan, 2019. "Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy," Applied Energy, Elsevier, vol. 237(C), pages 646-670.
    14. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    15. Alipour, Manijeh & Zare, Kazem & Seyedi, Heresh, 2018. "A multi-follower bilevel stochastic programming approach for energy management of combined heat and power micro-grids," Energy, Elsevier, vol. 149(C), pages 135-146.
    16. Mojica, Jose L. & Petersen, Damon & Hansen, Brigham & Powell, Kody M. & Hedengren, John D., 2017. "Optimal combined long-term facility design and short-term operational strategy for CHP capacity investments," Energy, Elsevier, vol. 118(C), pages 97-115.
    17. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Feng, Nanping, 2020. "A robust optimization approach for optimal load dispatch of community energy hub," Applied Energy, Elsevier, vol. 259(C).
    18. Urazel, Burak & Keskin, Kemal, 2023. "A new solution approach for non-convex combined heat and power economic dispatch problem considering power loss," Energy, Elsevier, vol. 278(PB).
    19. Gabrielli, Paolo & Fürer, Florian & Mavromatidis, Georgios & Mazzotti, Marco, 2019. "Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis," Applied Energy, Elsevier, vol. 238(C), pages 1192-1210.
    20. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:165:y:2018:i:pa:p:205-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.