IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v9y2017i4p95-d122820.html
   My bibliography  Save this article

SCMC: An Efficient Scheme for Minimizing Energy in WSNs Using a Set Cover Approach

Author

Listed:
  • Ahmed Redha Mahlous

    (Computer Science Department, Prince Sultan University, Riyadh 11586, Saudi Arabia)

Abstract

Energy-efficient clustering and routing are well known optimization problems in the study of Wireless Sensor Network (WSN) lifetime extension. In this paper, we propose an intelligent hybrid optimization algorithm based on a Set Cover approach to create clusters, and min-cost max-flow for routing (SCMC) to increase the lifetime of WSNs. In our method we used linear programming (LP) to model the WSN optimization problem. This model considers minimizing the energy for all nodes in each set cover (cluster), and then minimizing the routing energy between the nodes and the base station through intermediate nodes, namely cluster heads. To evaluate the performance of our scheme, extensive simulations were conducted with different scenarios. The results show that the set cover approach combined with the min-cost max-flow algorithm reduces energy consumption and increases the network’s lifetime and throughput.

Suggested Citation

  • Ahmed Redha Mahlous, 2017. "SCMC: An Efficient Scheme for Minimizing Energy in WSNs Using a Set Cover Approach," Future Internet, MDPI, vol. 9(4), pages 1-18, December.
  • Handle: RePEc:gam:jftint:v:9:y:2017:i:4:p:95-:d:122820
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/9/4/95/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/9/4/95/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert E. Bixby & Donald K. Wagner, 1988. "An Almost Linear-Time Algorithm for Graph Realization," Mathematics of Operations Research, INFORMS, vol. 13(1), pages 99-123, February.
    2. Lan, Guanghui & DePuy, Gail W. & Whitehouse, Gary E., 2007. "An effective and simple heuristic for the set covering problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1387-1403, February.
    3. Babayo, Aliyu Aliyu & Anisi, Mohammad Hossein & Ali, Ihsan, 2017. "A Review on energy management schemes in energy harvesting wireless sensor networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1176-1184.
    4. James B. Orlin, 1993. "A Faster Strongly Polynomial Minimum Cost Flow Algorithm," Operations Research, INFORMS, vol. 41(2), pages 338-350, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Yao & Shen, Zhicheng & Wang, Qiliang & Du, Jiyun & Lu, Lin & Yang, Hongxing, 2023. "Development of an inline bidirectional micro crossflow turbine for hydropower harvesting from water supply pipelines," Applied Energy, Elsevier, vol. 329(C).
    2. Wang, Gang, 2024. "Order assignment and two-stage integrated scheduling in fruit and vegetable supply chains," Omega, Elsevier, vol. 124(C).
    3. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    4. Tan, Ting & Yan, Zhimiao & Zou, Hongxiang & Ma, Kejing & Liu, Fengrui & Zhao, Linchuan & Peng, Zhike & Zhang, Wenming, 2019. "Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things," Applied Energy, Elsevier, vol. 254(C).
    5. Shoshana Anily, 1996. "The vehicle‐routing problem with delivery and back‐haul options," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(3), pages 415-434, April.
    6. László A. Végh, 2017. "A Strongly Polynomial Algorithm for Generalized Flow Maximization," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 179-211, January.
    7. Mahdi Zareei & Cesar Vargas-Rosales & Mohammad Hossein Anisi & Leila Musavian & Rafaela Villalpando-Hernandez & Shidrokh Goudarzi & Ehab Mahmoud Mohamed, 2019. "Enhancing the Performance of Energy Harvesting Sensor Networks for Environmental Monitoring Applications," Energies, MDPI, vol. 12(14), pages 1-14, July.
    8. Ali Amiri, 0. "Application placement in computer clustering in software as a service (SaaS) networks," Information Technology and Management, Springer, vol. 0, pages 1-13.
    9. Amirmahdi Tafreshian & Neda Masoud & Yafeng Yin, 2020. "Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions," Service Science, INFORMS, vol. 12(2-3), pages 44-60, June.
    10. László A. Végh, 2014. "Concave Generalized Flows with Applications to Market Equilibria," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 573-596, May.
    11. Abdullah Alshehri & Mahmoud Owais & Jayadev Gyani & Mishal H. Aljarbou & Saleh Alsulamy, 2023. "Residual Neural Networks for Origin–Destination Trip Matrix Estimation from Traffic Sensor Information," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    12. Ravindra K. Ahuja & Dorit S. Hochbaum, 2008. "TECHNICAL NOTE---Solving Linear Cost Dynamic Lot-Sizing Problems in O ( n log n ) Time," Operations Research, INFORMS, vol. 56(1), pages 255-261, February.
    13. Sharma, Anuj & Verma, Vanita & Kaur, Prabhjot & Dahiya, Kalpana, 2015. "An iterative algorithm for two level hierarchical time minimization transportation problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 700-707.
    14. Victor Reyes & Ignacio Araya, 2021. "A GRASP-based scheme for the set covering problem," Operational Research, Springer, vol. 21(4), pages 2391-2408, December.
    15. Wang, Feng & Sun, Xiuting & Xu, Jian, 2018. "A novel energy harvesting device for ultralow frequency excitation," Energy, Elsevier, vol. 151(C), pages 250-260.
    16. Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    17. Zsolt T. Kosztyán & István Szalkai, 2020. "Multimode resource-constrained project scheduling in flexible projects," Journal of Global Optimization, Springer, vol. 76(1), pages 211-241, January.
    18. I.N. Kamal Abadi & Nicholas G. Hall & Chelliah Sriskandarajah, 2000. "Minimizing Cycle Time in a Blocking Flowshop," Operations Research, INFORMS, vol. 48(1), pages 177-180, February.
    19. Adrian Marius Deaconu & Luciana Majercsik, 2021. "Flow Increment through Network Expansion," Mathematics, MDPI, vol. 9(18), pages 1-9, September.
    20. Lakmali Weerasena & Aniekan Ebiefung & Anthony Skjellum, 2022. "Design of a heuristic algorithm for the generalized multi-objective set covering problem," Computational Optimization and Applications, Springer, vol. 82(3), pages 717-751, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:9:y:2017:i:4:p:95-:d:122820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.