IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v309y2024ics0360544224029281.html
   My bibliography  Save this article

Fuel-economy-optimal power regulation for a twin-shaft turboshaft engine power generation unit based on high-pressure shaft power injection and variable shaft speed

Author

Listed:
  • Zhang, Chongbing
  • Ma, Yue
  • Li, Zhilin
  • Han, Lijin
  • Xiang, Changle
  • Wei, Zhengchao

Abstract

Due to the high power-to-weight ratio characteristic of turboshaft engines, the power generation unit based on it holds immense potential in the hybrid electric propulsion system (HEPS) of flying cars. To mitigate environmental pollution and reduce fuel consumption, while enhancing the fuel economy of turboshaft engine power generation unit (TEPGU) across the entire power output range, this paper investigates a dual-motor electronic regulation architecture for twin-shaft TEPGU. According to the different variable combinations of TEPGU architecture, two modes and their respective fuel-economy-optimal power regulations are proposed. Initially, by considering the efficiency distribution of motors, we construct an Extended co-working balance model based on the Newton-Raphson method. Subsequently, different operating modes are proposed and discussed, studying the characteristic laws of the power generation unit under each mode. For the variable speed mode and the power split mode, this article proposes a shaft-speed-feature-projective searching (SFPS) method and a multi-dimensions-feature-projective searching (MFPS) method based on characteristic dimensionality reduction projection. Finally, a comparative analysis of the fuel-saving effects of the SFPS and MFPS regulation methods is conducted, and the reasons for enhancing fuel efficiency are discussed. The simulation results show that the model of TEPGU is in good agreement with the experimental data, and the error of specific fuel consumption(SFC) in the full power range is less than 5.7 %. Besides, comparative results indicate that the strategies based on MFPS and SFPS can achieve a maximum instantaneous fuel consumption reduction of 14.38 % and 10.82 %, respectively. The MFPS strategy exhibits a fuel consumption saving of 12.69 % throughout the driving cycle, demonstrating superior performance in fuel economy.

Suggested Citation

  • Zhang, Chongbing & Ma, Yue & Li, Zhilin & Han, Lijin & Xiang, Changle & Wei, Zhengchao, 2024. "Fuel-economy-optimal power regulation for a twin-shaft turboshaft engine power generation unit based on high-pressure shaft power injection and variable shaft speed," Energy, Elsevier, vol. 309(C).
  • Handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224029281
    DOI: 10.1016/j.energy.2024.133153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224029281
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reine, Alexandre & Bou Nader, Wissam, 2019. "Fuel consumption potential of different external combustion gas-turbine thermodynamic configurations for extended range electric vehicles," Energy, Elsevier, vol. 175(C), pages 900-913.
    2. Wei, Zhengchao & Ma, Yue & Yang, Ningkang & Ruan, Shumin & Xiang, Changle, 2023. "Reinforcement learning based power management integrating economic rotational speed of turboshaft engine and safety constraints of battery for hybrid electric power system," Energy, Elsevier, vol. 263(PB).
    3. Maino, Claudio & Misul, Daniela & Musa, Alessia & Spessa, Ezio, 2021. "Optimal mesh discretization of the dynamic programming for hybrid electric vehicles," Applied Energy, Elsevier, vol. 292(C).
    4. Li, Xunming & Han, Lijin & Liu, Hui & Wang, Weida & Xiang, Changle, 2019. "Real-time optimal energy management strategy for a dual-mode power-split hybrid electric vehicle based on an explicit model predictive control algorithm," Energy, Elsevier, vol. 172(C), pages 1161-1178.
    5. Collins, Jeffrey M. & McLarty, Dustin, 2020. "All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids," Applied Energy, Elsevier, vol. 265(C).
    6. Yang, Ningkang & Ruan, Shumin & Han, Lijin & Liu, Hui & Guo, Lingxiong & Xiang, Changle, 2023. "Reinforcement learning-based real-time intelligent energy management for hybrid electric vehicles in a model predictive control framework," Energy, Elsevier, vol. 270(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Zhengchao & Ma, Yue & Yang, Ningkang & Ruan, Shumin & Xiang, Changle, 2023. "Reinforcement learning based power management integrating economic rotational speed of turboshaft engine and safety constraints of battery for hybrid electric power system," Energy, Elsevier, vol. 263(PB).
    2. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    3. Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
    4. Matteo Acquarone & Claudio Maino & Daniela Misul & Ezio Spessa & Antonio Mastropietro & Luca Sorrentino & Enrico Busto, 2023. "Influence of the Reward Function on the Selection of Reinforcement Learning Agents for Hybrid Electric Vehicles Real-Time Control," Energies, MDPI, vol. 16(6), pages 1-22, March.
    5. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    7. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    8. Ju, Fei & Zhuang, Weichao & Wang, Liangmo & Zhang, Zhe, 2020. "Comparison of four-wheel-drive hybrid powertrain configurations," Energy, Elsevier, vol. 209(C).
    9. Han, Lijin & You, Congwen & Yang, Ningkang & Liu, Hui & Chen, Ke & Xiang, Changle, 2024. "Adaptive real-time energy management strategy using heuristic search for off-road hybrid electric vehicles," Energy, Elsevier, vol. 304(C).
    10. Yang, Ningkang & Han, Lijin & Bo, Lin & Liu, Baoshuai & Chen, Xiuqi & Liu, Hui & Xiang, Changle, 2023. "Real-time adaptive energy management for off-road hybrid electric vehicles based on decision-time planning," Energy, Elsevier, vol. 282(C).
    11. Liu, Xinzhi & Qi, Nanjian & Dai, Keren & Yin, Yajiang & Zhao, Jiahao & Wang, Xiaofeng & You, Zheng, 2022. "Sponge Supercapacitor rule-based energy management strategy for wireless sensor nodes optimized by using dynamic programing algorithm," Energy, Elsevier, vol. 239(PE).
    12. Yang, Yalian & Li, Pengshuai & Pei, Huanxin & Zou, Yunge, 2022. "Design of all-wheel-drive power-split hybrid configuration schemes based on hierarchical topology graph theory," Energy, Elsevier, vol. 242(C).
    13. Wan, Xin & Luo, Xiong-Lin, 2020. "Economic optimization of chemical processes based on zone predictive control with redundancy variables," Energy, Elsevier, vol. 212(C).
    14. Paolo Aliberti & Marco Minneci & Marco Sorrentino & Fabrizio Cuomo & Carmine Musto, 2025. "Efficiency-Based Modeling of Aeronautical Proton Exchange Membrane Fuel Cell Systems for Integrated Simulation Framework Applications," Energies, MDPI, vol. 18(4), pages 1-29, February.
    15. Zheng, Weiguang & Ma, Mengcheng & Xu, Enyong & Huang, Qibai, 2024. "An energy management strategy for fuel-cell hybrid electric vehicles based on model predictive control with a variable time domain," Energy, Elsevier, vol. 312(C).
    16. Nikiforakis, Ioannis & Mamalis, Sotirios & Assanis, Dimitris, 2025. "Understanding Solid Oxide Fuel Cell Hybridization: A Critical Review," Applied Energy, Elsevier, vol. 377(PC).
    17. Hu, Dong & Huang, Chao & Yin, Guodong & Li, Yangmin & Huang, Yue & Huang, Hailong & Wu, Jingda & Li, Wenfei & Xie, Hui, 2024. "A transfer-based reinforcement learning collaborative energy management strategy for extended-range electric buses with cabin temperature comfort consideration," Energy, Elsevier, vol. 290(C).
    18. Kerbel, Lindsey & Ayalew, Beshah & Ivanco, Andrej, 2024. "Shared learning of powertrain control policies for vehicle fleets," Applied Energy, Elsevier, vol. 365(C).
    19. Wang, Jiqiang & Wang, Ya & Zhang, Shaohui & Fan, Chun & Zhou, Nanqing & Liu, Jinhui & Li, Xin & Liu, Yun & Hou, Xiujun & Yi, Bowen, 2024. "Accounting of aviation carbon emission in developing countries based on flight-level ADS-B data," Applied Energy, Elsevier, vol. 358(C).
    20. Huang, Ruchen & He, Hongwen & Zhao, Xuyang & Wang, Yunlong & Li, Menglin, 2022. "Battery health-aware and naturalistic data-driven energy management for hybrid electric bus based on TD3 deep reinforcement learning algorithm," Applied Energy, Elsevier, vol. 321(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224029281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.