IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2565-d784917.html
   My bibliography  Save this article

Impact of Preparation Method and Y 2 O 3 Content on the Properties of the YSZ Electrolyte

Author

Listed:
  • Michal Carda

    (Department of Inorganic Technology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, Prague 6—Dejvice, 166 28 Prague, Czech Republic)

  • Nela Adamová

    (Department of Inorganic Technology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, Prague 6—Dejvice, 166 28 Prague, Czech Republic)

  • Daniel Budáč

    (Department of Inorganic Technology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, Prague 6—Dejvice, 166 28 Prague, Czech Republic)

  • Veronika Rečková

    (Department of Inorganic Technology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, Prague 6—Dejvice, 166 28 Prague, Czech Republic)

  • Martin Paidar

    (Department of Inorganic Technology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, Prague 6—Dejvice, 166 28 Prague, Czech Republic)

  • Karel Bouzek

    (Department of Inorganic Technology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, Prague 6—Dejvice, 166 28 Prague, Czech Republic)

Abstract

This study is an effort to cover and interconnect multiple aspects of the fabrication of the yttria-stabilized zirconia (YSZ) from powder preparation to a solid electrolyte suitable for utilization in solid oxide cells. Thus, a series of YSZ electrolytes was prepared, differing in the content of the Y 2 O 3 dopant and in the method of preparation. Combustion synthesis along with the thermal decomposition of precursors was used for YSZ powder synthesis with a dopant content of 8 to 18 mol.%. Post-synthesis treatment of the powder was necessary for achieving satisfactory quality of the subsequent sintering step. The morphology analyses of the YSZ powders and sintered electrolytes produced proved that small particles with a uniform size distribution are essential for obtaining a dense electrolyte. Furthermore, the conductivity of YSZ electrolytes with different Y 2 O 3 contents was examined in the temperature range of 400 to 800 °C. The lowest conductivity was found for the sample with the highest Y 2 O 3 content. The obtained results enable the preparation methods, YSZ powder morphology, and composition to be connected to the mechanical and electrochemical properties of the YSZ electrolyte. Thus, this study links every step of YSZ electrolyte fabrication, which has not been sufficiently clearly described until now.

Suggested Citation

  • Michal Carda & Nela Adamová & Daniel Budáč & Veronika Rečková & Martin Paidar & Karel Bouzek, 2022. "Impact of Preparation Method and Y 2 O 3 Content on the Properties of the YSZ Electrolyte," Energies, MDPI, vol. 15(7), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2565-:d:784917
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2565/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2565/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cho, Gu Young & Lee, Yoon Ho & Yu, Wonjong & An, Jihwan & Cha, Suk Won, 2019. "Optimization of Y2O3 dopant concentration of yttria stabilized zirconia thin film electrolyte prepared by plasma enhanced atomic layer deposition for high performance thin film solid oxide fuel cells," Energy, Elsevier, vol. 173(C), pages 436-442.
    2. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    2. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2021. "Techno-economic assessment of alternative marine fuels for inland shipping in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Hongtu Yang & Yan Sun & Changgao Xia & Hongdang Zhang, 2022. "Research on Energy Management Strategy of Fuel Cell Electric Tractor Based on Multi-Algorithm Fusion and Optimization," Energies, MDPI, vol. 15(17), pages 1-15, September.
    4. Zuo, Jian & Steiner, Nadia Yousfi & Li, Zhongliang & Hissel, Daniel, 2024. "Health management review for fuel cells: Focus on action phase," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    5. Chehrmonavari, Hamed & Kakaee, Amirhasan & Hosseini, Seyed Ehsan & Desideri, Umberto & Tsatsaronis, George & Floerchinger, Gus & Braun, Robert & Paykani, Amin, 2023. "Hybridizing solid oxide fuel cells with internal combustion engines for power and propulsion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    6. Huang, Yu & Turan, Ali, 2022. "Flexible power generation based on solid oxide fuel cell and twin-shaft free turbine engine: Mechanical equilibrium running and design analysis," Applied Energy, Elsevier, vol. 315(C).
    7. Ramzi Saidi & Jean-Christophe Olivier & Mohamed Machmoum & Eric Chauveau, 2021. "Cascaded Centered Moving Average Filters for Energy Management in Multisource Power Systems with a Large Number of Devices," Energies, MDPI, vol. 14(12), pages 1-21, June.
    8. Romo Jiménez, Oscar Arturo & Noda, René López & Portelles, J. & Vázquez Arce, Jorge Luis & Iñiguez, Enrique & López Mercado, Cesar Alberto & Solorio, Fernando & Rebellon, Julia & Read, John & Tiznado,, 2022. "The effect of temperature and bias on the energy storage of a Ru/YSZ/Ru thin-film device," Energy, Elsevier, vol. 253(C).
    9. Koo, Taehyung & Kim, Young Sang & Lee, Dongkeun & Yu, Sangseok & Lee, Young Duk, 2021. "System simulation and exergetic analysis of solid oxide fuel cell power generation system with cascade configuration," Energy, Elsevier, vol. 214(C).
    10. Perčić, Maja & Vladimir, Nikola & Jovanović, Ivana & Koričan, Marija, 2022. "Application of fuel cells with zero-carbon fuels in short-sea shipping," Applied Energy, Elsevier, vol. 309(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2565-:d:784917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.