IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v172y2019icp892-912.html
   My bibliography  Save this article

Rapid multi-objective optimization with multi-year future weather condition and decision-making support for building retrofit

Author

Listed:
  • Shen, Pengyuan
  • Braham, William
  • Yi, Yunkyu
  • Eaton, Eric

Abstract

A method of fast multi-objective optimization and decision-making support for building retrofit planning is developed, and lifecycle cost analysis method taking into account of future climate condition is used in evaluating the retrofit performance. In order to resolve the optimization problem in a fast manner with recourse to non-dominate sorting differential evolution algorithm, the simplified hourly dynamic simulation modeling tool SimBldPy is used as the simulator for objective function evaluation. Moreover, the generated non-dominated solutions are treated and rendered by a layered scheme using agglomerative hierarchical clustering technique to make it more intuitive and sense making during the decision-making process as well as to be better presented.

Suggested Citation

  • Shen, Pengyuan & Braham, William & Yi, Yunkyu & Eaton, Eric, 2019. "Rapid multi-objective optimization with multi-year future weather condition and decision-making support for building retrofit," Energy, Elsevier, vol. 172(C), pages 892-912.
  • Handle: RePEc:eee:energy:v:172:y:2019:i:c:p:892-912
    DOI: 10.1016/j.energy.2019.01.164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421930180X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.01.164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chantrelle, Fanny Pernodet & Lahmidi, Hicham & Keilholz, Werner & Mankibi, Mohamed El & Michel, Pierre, 2011. "Development of a multicriteria tool for optimizing the renovation of buildings," Applied Energy, Elsevier, vol. 88(4), pages 1386-1394, April.
    2. Shen, Pengyuan & Braham, William & Yi, Yunkyu, 2018. "Development of a lightweight building simulation tool using simplified zone thermal coupling for fast parametric study," Applied Energy, Elsevier, vol. 223(C), pages 188-214.
    3. Giuliano, Genevieve & Small, Kenneth A., 1991. "Subcenters in the Los Angeles region," Regional Science and Urban Economics, Elsevier, vol. 21(2), pages 163-182, July.
    4. Shen, Pengyuan & Lior, Noam, 2016. "Vulnerability to climate change impacts of present renewable energy systems designed for achieving net-zero energy buildings," Energy, Elsevier, vol. 114(C), pages 1288-1305.
    5. Xu, Peng & Huang, Yu Joe & Miller, Norman & Schlegel, Nicole & Shen, Pengyuan, 2012. "Impacts of climate change on building heating and cooling energy patterns in California," Energy, Elsevier, vol. 44(1), pages 792-804.
    6. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    7. Robert Thorndike, 1953. "Who belongs in the family?," Psychometrika, Springer;The Psychometric Society, vol. 18(4), pages 267-276, December.
    8. Wu, Raphael & Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2017. "Multiobjective optimisation of energy systems and building envelope retrofit in a residential community," Applied Energy, Elsevier, vol. 190(C), pages 634-649.
    9. Shen, Pengyuan & Braham, William & Yi, Yunkyu, 2019. "The feasibility and importance of considering climate change impacts in building retrofit analysis," Applied Energy, Elsevier, vol. 233, pages 254-270.
    10. Tadesse, Mahlet G. & Sha, Naijun & Vannucci, Marina, 2005. "Bayesian Variable Selection in Clustering High-Dimensional Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 602-617, June.
    11. Yoza, Akihiro & Yona, Atsushi & Senjyu, Tomonobu & Funabashi, Toshihisa, 2014. "Optimal capacity and expansion planning methodology of PV and battery in smart house," Renewable Energy, Elsevier, vol. 69(C), pages 25-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng-Yuan Wang & Kyung-Tae Lee & Ju-Hyung Kim, 2022. "Green Retrofitting Simulation for Sustainable Commercial Buildings in China Using a Proposed Multi-Agent Evolutionary Game," Sustainability, MDPI, vol. 14(13), pages 1-32, June.
    2. Pajek, Luka & Košir, Mitja, 2021. "Strategy for achieving long-term energy efficiency of European single-family buildings through passive climate adaptation," Applied Energy, Elsevier, vol. 297(C).
    3. Wang, Yuhao & Qu, Ke & Chen, Xiangjie & Zhang, Xingxing & Riffat, Saffa, 2022. "Holistic electrification vs deep energy retrofits for optimal decarbonisation pathways of UK dwellings: A case study of the 1940s’ British post-war masonry house," Energy, Elsevier, vol. 241(C).
    4. Pengying Wang & Shuo Zhang, 2022. "Retrofitting Strategies Based on Orthogonal Array Testing to Develop Nearly Zero Energy Buildings," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    5. Ma, Dingyuan & Li, Xiaodong & Lin, Borong & Zhu, Yimin, 2023. "An intelligent retrofit decision-making model for building program planning considering tacit knowledge and multiple objectives," Energy, Elsevier, vol. 263(PB).
    6. Petkov, Ivalin & Mavromatidis, Georgios & Knoeri, Christof & Allan, James & Hoffmann, Volker H., 2022. "MANGOret: An optimization framework for the long-term investment planning of building multi-energy system and envelope retrofits," Applied Energy, Elsevier, vol. 314(C).
    7. Richarz, Jan & Henn, Sarah & Osterhage, Tanja & Müller, Dirk, 2022. "Optimal scheduling of modernization measures for typical non-residential buildings," Energy, Elsevier, vol. 238(PA).
    8. Shen, Pengyuan & Yang, Biao, 2020. "Projecting Texas energy use for residential sector under future climate and urbanization scenarios: A bottom-up method based on twenty-year regional energy use data," Energy, Elsevier, vol. 193(C).
    9. Ascione, Fabrizio & Bianco, Nicola & Maria Mauro, Gerardo & Napolitano, Davide Ferdinando, 2019. "Building envelope design: Multi-objective optimization to minimize energy consumption, global cost and thermal discomfort. Application to different Italian climatic zones," Energy, Elsevier, vol. 174(C), pages 359-374.
    10. Luo, Xiaojun & Oyedele, Lukumon O., 2022. "Integrated life-cycle optimisation and supply-side management for building retrofitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Qu, Ke & Chen, Xiangjie & Wang, Yixin & Calautit, John & Riffat, Saffa & Cui, Xin, 2021. "Comprehensive energy, economic and thermal comfort assessments for the passive energy retrofit of historical buildings - A case study of a late nineteenth-century Victorian house renovation in the UK," Energy, Elsevier, vol. 220(C).
    12. Davidson, Eleni & Schwartz, Yair & Williams, Joe & Mumovic, Dejan, 2024. "Resilience of the higher education sector to future climates: A systematic review of predicted building energy performance and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shadram, Farshid & Bhattacharjee, Shimantika & Lidelöw, Sofia & Mukkavaara, Jani & Olofsson, Thomas, 2020. "Exploring the trade-off in life cycle energy of building retrofit through optimization," Applied Energy, Elsevier, vol. 269(C).
    2. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    3. Rabani, Mehrdad & Bayera Madessa, Habtamu & Mohseni, Omid & Nord, Natasa, 2020. "Minimizing delivered energy and life cycle cost using Graphical script: An office building retrofitting case," Applied Energy, Elsevier, vol. 268(C).
    4. Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
    5. Shen, Pengyuan & Yang, Biao, 2020. "Projecting Texas energy use for residential sector under future climate and urbanization scenarios: A bottom-up method based on twenty-year regional energy use data," Energy, Elsevier, vol. 193(C).
    6. Cristina Baglivo & Delia D’Agostino & Paolo Maria Congedo, 2018. "Design of a Ventilation System Coupled with a Horizontal Air-Ground Heat Exchanger (HAGHE) for a Residential Building in a Warm Climate," Energies, MDPI, vol. 11(8), pages 1-27, August.
    7. Mehrdad Rabani & Habtamu Bayera Madessa & Natasa Nord, 2021. "Building Retrofitting through Coupling of Building Energy Simulation-Optimization Tool with CFD and Daylight Programs," Energies, MDPI, vol. 14(8), pages 1-23, April.
    8. Deb, C. & Schlueter, A., 2021. "Review of data-driven energy modelling techniques for building retrofit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Im, Piljae & Joe, Jaewan & Bae, Yeonjin & New, Joshua R., 2020. "Empirical validation of building energy modeling for multi-zones commercial buildings in cooling season," Applied Energy, Elsevier, vol. 261(C).
    10. Shen, Pengyuan & Braham, William & Yi, Yunkyu, 2018. "Development of a lightweight building simulation tool using simplified zone thermal coupling for fast parametric study," Applied Energy, Elsevier, vol. 223(C), pages 188-214.
    11. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    12. Mauree, Dasaraden & Naboni, Emanuele & Coccolo, Silvia & Perera, A.T.D. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 733-746.
    13. Petkov, Ivalin & Mavromatidis, Georgios & Knoeri, Christof & Allan, James & Hoffmann, Volker H., 2022. "MANGOret: An optimization framework for the long-term investment planning of building multi-energy system and envelope retrofits," Applied Energy, Elsevier, vol. 314(C).
    14. S. Soutullo & E. Giancola & M. J. Jiménez & J. A. Ferrer & M. N. Sánchez, 2020. "How Climate Trends Impact on the Thermal Performance of a Typical Residential Building in Madrid," Energies, MDPI, vol. 13(1), pages 1-21, January.
    15. Abokersh, Mohamed Hany & Spiekman, Marleen & Vijlbrief, Olav & van Goch, T.A.J. & Vallès, Manel & Boer, Dieter, 2021. "A real-time diagnostic tool for evaluating the thermal performance of nearly zero energy buildings," Applied Energy, Elsevier, vol. 281(C).
    16. Shen, Pengyuan & Lior, Noam, 2016. "Vulnerability to climate change impacts of present renewable energy systems designed for achieving net-zero energy buildings," Energy, Elsevier, vol. 114(C), pages 1288-1305.
    17. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    18. Claudia Quinteros-Cartaya & Guillermo Solorio-Magaña & Francisco Javier Núñez-Cornú & Felipe de Jesús Escalona-Alcázar & Diana Núñez, 2023. "Microearthquakes in the Guadalajara Metropolitan Zone, Mexico: evidence from buried active faults in Tesistán Valley, Zapopan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2797-2818, April.
    19. Jae Ik Kim & Chang Hwan Yeo & Jin-Hwi Kwon, 2014. "Spatial change in urban employment distribution in Seoul metropolitan city: clustering, dispersion and general dispersion," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 18(3), pages 355-372, November.
    20. Katarzyna Hampel & Paulina Ucieklak-Jez & Agnieszka Bem, 2021. "Health System Responsiveness in the Light of the Euro Health Consumer Index," European Research Studies Journal, European Research Studies Journal, vol. 0(4B), pages 659-667.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:172:y:2019:i:c:p:892-912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.