IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipas0360544221021198.html
   My bibliography  Save this article

Optimal scheduling of modernization measures for typical non-residential buildings

Author

Listed:
  • Richarz, Jan
  • Henn, Sarah
  • Osterhage, Tanja
  • Müller, Dirk

Abstract

Existing non-residential buildings account for a significant proportion of the energy consumption of the European building stock. Modernizing these buildings can significantly contribute to declared emission reduction targets. Modernization measures are rarely realized in the life cycle of buildings but have long-term effects on their energetic performance. Therefore, it is not only essential to identify future-oriented modernization measures but also to schedule them over the life cycle of a building. For this purpose, we present a mixed-integer linear program that schedules measures for a building energy system including envelope and supply system. The program determines not only the optimal combination of modernization measures but also the respective optimal point of time when each measure shall be realized. A multi-objective optimization is conducted to minimize carbon emissions and net present value. Thermal demand profiles serve as input for the optimization model and are calculated preliminary using dynamic simulations. Constraints and boundary conditions are specified separately for each prospective year of the schedule's time horizon. Results showed that the constitution of a building energy system changes several times throughout a schedule. Determined Pareto-efficient solutions reveal that carbon emissions could be saved more cost-efficiently than with approaches without scheduling.

Suggested Citation

  • Richarz, Jan & Henn, Sarah & Osterhage, Tanja & Müller, Dirk, 2022. "Optimal scheduling of modernization measures for typical non-residential buildings," Energy, Elsevier, vol. 238(PA).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221021198
    DOI: 10.1016/j.energy.2021.121871
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221021198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121871?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
    2. Evins, Ralph, 2013. "A review of computational optimisation methods applied to sustainable building design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 230-245.
    3. Pecenak, Zachary K. & Stadler, Michael & Fahy, Kelsey, 2019. "Efficient multi-year economic energy planning in microgrids," Applied Energy, Elsevier, vol. 255(C).
    4. Abolfazl Farahani & Holger Wallbaum & Jan-Olof Dalenbäck, 2019. "Optimized maintenance and renovation scheduling in multifamily buildings – a systematic approach based on condition state and life cycle cost of building components," Construction Management and Economics, Taylor & Francis Journals, vol. 37(3), pages 139-155, March.
    5. Schütz, Thomas & Schiffer, Lutz & Harb, Hassan & Fuchs, Marcus & Müller, Dirk, 2017. "Optimal design of energy conversion units and envelopes for residential building retrofits using a comprehensive MILP model," Applied Energy, Elsevier, vol. 185(P1), pages 1-15.
    6. Iturriaga, E. & Aldasoro, U. & Terés-Zubiaga, J. & Campos-Celador, A., 2018. "Optimal renovation of buildings towards the nearly Zero Energy Building standard," Energy, Elsevier, vol. 160(C), pages 1101-1114.
    7. Hong, Tianzhen & Piette, Mary Ann & Chen, Yixing & Lee, Sang Hoon & Taylor-Lange, Sarah C. & Zhang, Rongpeng & Sun, Kaiyu & Price, Phillip, 2015. "Commercial Building Energy Saver: An energy retrofit analysis toolkit," Applied Energy, Elsevier, vol. 159(C), pages 298-309.
    8. Bohlayer, Markus & Bürger, Adrian & Fleschutz, Markus & Braun, Marco & Zöttl, Gregor, 2021. "Multi-period investment pathways - Modeling approaches to design distributed energy systems under uncertainty," Applied Energy, Elsevier, vol. 285(C).
    9. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul, 2016. "An exergy-based multi-objective optimisation model for energy retrofit strategies in non-domestic buildings," Energy, Elsevier, vol. 117(P2), pages 506-522.
    10. Shen, Pengyuan & Braham, William & Yi, Yunkyu & Eaton, Eric, 2019. "Rapid multi-objective optimization with multi-year future weather condition and decision-making support for building retrofit," Energy, Elsevier, vol. 172(C), pages 892-912.
    11. Schütz, Thomas & Schraven, Markus Hans & Fuchs, Marcus & Remmen, Peter & Müller, Dirk, 2018. "Comparison of clustering algorithms for the selection of typical demand days for energy system synthesis," Renewable Energy, Elsevier, vol. 129(PA), pages 570-582.
    12. Wu, Zhou & Wang, Bo & Xia, Xiaohua, 2016. "Large-scale building energy efficiency retrofit: Concept, model and control," Energy, Elsevier, vol. 109(C), pages 456-465.
    13. Moret, Stefano & Codina Gironès, Víctor & Bierlaire, Michel & Maréchal, François, 2017. "Characterization of input uncertainties in strategic energy planning models," Applied Energy, Elsevier, vol. 202(C), pages 597-617.
    14. Mavromatidis, Georgios & Petkov, Ivalin, 2021. "MANGO: A novel optimization model for the long-term, multi-stage planning of decentralized multi-energy systems," Applied Energy, Elsevier, vol. 288(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Bingqian & Bissuel, Côme & Courtot, François & Gicquel, Céline & Quadri, Dominique, 2024. "A generalized Benders decomposition approach for the optimal design of a local multi-energy system," European Journal of Operational Research, Elsevier, vol. 318(1), pages 43-54.
    2. Ming-Qiang Huang & Rui-Juan Lin, 2022. "Evolutionary Game Analysis of Energy-Saving Renovations of Existing Rural Residential Buildings from the Perspective of Stakeholders," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    3. Lerbinger, Alicia & Petkov, Ivalin & Mavromatidis, Georgios & Knoeri, Christof, 2023. "Optimal decarbonization strategies for existing districts considering energy systems and retrofits," Applied Energy, Elsevier, vol. 352(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petkov, Ivalin & Mavromatidis, Georgios & Knoeri, Christof & Allan, James & Hoffmann, Volker H., 2022. "MANGOret: An optimization framework for the long-term investment planning of building multi-energy system and envelope retrofits," Applied Energy, Elsevier, vol. 314(C).
    2. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2018. "Passive design optimization of low energy buildings in different climates," Energy, Elsevier, vol. 165(PA), pages 591-613.
    3. Grillone, Benedetto & Danov, Stoyan & Sumper, Andreas & Cipriano, Jordi & Mor, Gerard, 2020. "A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Hoettecke, Lukas & Schuetz, Thomas & Thiem, Sebastian & Niessen, Stefan, 2022. "Technology pathways for industrial cogeneration systems: Optimal investment planning considering long-term trends," Applied Energy, Elsevier, vol. 324(C).
    5. Wu, Raphael & Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2017. "Multiobjective optimisation of energy systems and building envelope retrofit in a residential community," Applied Energy, Elsevier, vol. 190(C), pages 634-649.
    6. Cascone, Ylenia & Capozzoli, Alfonso & Perino, Marco, 2018. "Optimisation analysis of PCM-enhanced opaque building envelope components for the energy retrofitting of office buildings in Mediterranean climates," Applied Energy, Elsevier, vol. 211(C), pages 929-953.
    7. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design," Energy, Elsevier, vol. 128(C), pages 244-263.
    8. Thrampoulidis, Emmanouil & Mavromatidis, Georgios & Lucchi, Aurelien & Orehounig, Kristina, 2021. "A machine learning-based surrogate model to approximate optimal building retrofit solutions," Applied Energy, Elsevier, vol. 281(C).
    9. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2022. "Risk assessment of energy investment in the industrial framework – Uncertainty and Sensitivity Analysis for energy design and operation optimisation," Energy, Elsevier, vol. 239(PA).
    10. Leprince, Julien & Schledorn, Amos & Guericke, Daniela & Dominkovic, Dominik Franjo & Madsen, Henrik & Zeiler, Wim, 2023. "Can occupant behaviors affect urban energy planning? Distributed stochastic optimization for energy communities," Applied Energy, Elsevier, vol. 348(C).
    11. Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
    12. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2017. "Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach," Energy, Elsevier, vol. 118(C), pages 999-1017.
    13. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    14. Pecenak, Zachary K. & Stadler, Michael & Mathiesen, Patrick & Fahy, Kelsey & Kleissl, Jan, 2020. "Robust design of microgrids using a hybrid minimum investment optimization," Applied Energy, Elsevier, vol. 276(C).
    15. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Napolitano, Davide Ferdinando, 2019. "Retrofit of villas on Mediterranean coastlines: Pareto optimization with a view to energy-efficiency and cost-effectiveness," Applied Energy, Elsevier, vol. 254(C).
    16. Hoffmann, Maximilian & Kotzur, Leander & Stolten, Detlef, 2022. "The Pareto-optimal temporal aggregation of energy system models," Applied Energy, Elsevier, vol. 315(C).
    17. Zheng, Donglin & Yu, Lijun & Wang, Lizhen, 2019. "A techno-economic-risk decision-making methodology for large-scale building energy efficiency retrofit using Monte Carlo simulation," Energy, Elsevier, vol. 189(C).
    18. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "ExRET-Opt: An automated exergy/exergoeconomic simulation framework for building energy retrofit analysis and design optimisation," Applied Energy, Elsevier, vol. 192(C), pages 33-58.
    19. Lešnik, Maja & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2018. "Design parameters of the timber-glass upgrade module and the existing building: Impact on the energy-efficient refurbishment process," Energy, Elsevier, vol. 162(C), pages 1125-1138.
    20. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul, 2016. "An exergy-based multi-objective optimisation model for energy retrofit strategies in non-domestic buildings," Energy, Elsevier, vol. 117(P2), pages 506-522.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221021198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.