Auto-ignition of direct injection spray of light naphtha, primary reference fuels, gasoline and gasoline surrogate
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2018.12.144
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Badra, Jihad & Viollet, Yoann & Elwardany, Ahmed & Im, Hong G. & Chang, Junseok, 2016. "Physical and chemical effects of low octane gasoline fuels on compression ignition combustion," Applied Energy, Elsevier, vol. 183(C), pages 1197-1208.
- Hao, Han & Liu, Feiqi & Liu, Zongwei & Zhao, Fuquan, 2016. "Compression ignition of low-octane gasoline: Life cycle energy consumption and greenhouse gas emissions," Applied Energy, Elsevier, vol. 181(C), pages 391-398.
- Wang, Buyu & Wang, Zhi & Shuai, Shijin & Xu, Hongming, 2015. "Combustion and emission characteristics of Multiple Premixed Compression Ignition (MPCI) mode fuelled with different low octane gasolines," Applied Energy, Elsevier, vol. 160(C), pages 769-776.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Guangze Li & Boxuan Cui & Chenglin Zhang & Liuyong Chang & Longfei Chen, 2023. "Formulation of a Jet Fuel Surrogate and Its Kinetic Chemical Mechanism by Emulating Physical and Chemical Properties of Real Jet Fuel," Sustainability, MDPI, vol. 15(18), pages 1-26, September.
- Ashour, Mahmoud K. & Eldrainy, Yehia A. & Elwardany, Ahmed E., 2020. "Effect of cracked naphtha/biodiesel/diesel blends on performance, combustion and emissions characteristics of compression ignition engine," Energy, Elsevier, vol. 192(C).
- Obed Majeed Ali & Omar Rafae Alomar & Omar Mohammed Ali & Naseer T. Alwan & Salam J. Yaqoob & Anand Nayyar & Sameh Askar & Mohamed Abouhawwash, 2021. "Operating of Gasoline Engine Using Naphtha and Octane Boosters from Waste as Fuel Additives," Sustainability, MDPI, vol. 13(23), pages 1-11, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jia, Guorui & Wang, Hu & Tong, Laihui & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode," Applied Energy, Elsevier, vol. 192(C), pages 59-70.
- Badra, Jihad & Viollet, Yoann & Elwardany, Ahmed & Im, Hong G. & Chang, Junseok, 2016. "Physical and chemical effects of low octane gasoline fuels on compression ignition combustion," Applied Energy, Elsevier, vol. 183(C), pages 1197-1208.
- Wei, Haiqiao & Hua, Jianxiong & Pan, Mingzhang & Feng, Dengquan & Zhou, Lei & Pan, Jiaying, 2018. "Experimental investigation on knocking combustion characteristics of gasoline compression ignition engine," Energy, Elsevier, vol. 143(C), pages 624-633.
- Jiang, Chenxu & Li, Zilong & Qian, Yong & Wang, Xiaole & Zhang, Yahui & Lu, Xingcai, 2018. "Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoli," Energy, Elsevier, vol. 157(C), pages 173-187.
- Yapicioglu, Arda & Dincer, Ibrahim, 2019. "A review on clean ammonia as a potential fuel for power generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 96-108.
- Hao, Han & Liu, Feiqi & Liu, Zongwei & Zhao, Fuquan, 2016. "Compression ignition of low-octane gasoline: Life cycle energy consumption and greenhouse gas emissions," Applied Energy, Elsevier, vol. 181(C), pages 391-398.
- Tay, Kun Lin & Yang, Wenming & Li, Jing & Zhou, Dezhi & Yu, Wenbin & Zhao, Feiyang & Chou, Siaw Kiang & Mohan, Balaji, 2017. "Numerical investigation on the combustion and emissions of a kerosene-diesel fueled compression ignition engine assisted by ammonia fumigation," Applied Energy, Elsevier, vol. 204(C), pages 1476-1488.
- Yanuandri Putrasari & Ocktaeck Lim, 2019. "A Review of Gasoline Compression Ignition: A Promising Technology Potentially Fueled with Mixtures of Gasoline and Biodiesel to Meet Future Engine Efficiency and Emission Targets," Energies, MDPI, vol. 12(2), pages 1-27, January.
- Li, Yaopeng & Jia, Ming & Chang, Yachao & Kokjohn, Sage L. & Reitz, Rolf D., 2016. "Thermodynamic energy and exergy analysis of three different engine combustion regimes," Applied Energy, Elsevier, vol. 180(C), pages 849-858.
- Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
- Badra, Jihad & AlRamadan, Abdullah S. & Sarathy, S. Mani, 2017. "Optimization of the octane response of gasoline/ethanol blends," Applied Energy, Elsevier, vol. 203(C), pages 778-793.
- Fang, Cheng & Ouyang, Minggao & Tunestal, Per & Yang, Fuyuan & Yang, Xiaofan, 2018. "Closed-loop combustion phase control for multiple combustion modes by multiple injections in a compression ignition engine fueled by gasoline-diesel mixture," Applied Energy, Elsevier, vol. 231(C), pages 816-825.
- Wang, Yong & Ma, Yinjie & Xie, Deyi & Yu, Zhenhuan & E, Jiaqiang, 2021. "Numerical study on the influence of gasoline properties and thermodynamic conditions on premixed laminar flame velocity at multiple conditions," Energy, Elsevier, vol. 233(C).
- An, Yanzhao & Tang, Qinglong & Vallinayagam, Raman & Shi, Hao & Sim, Jaeheon & Chang, Junseok & Magnotti, Gaetano & Johansson, Bengt, 2019. "Combustion stability study of partially premixed combustion by high-pressure multiple injections with low-octane fuel," Applied Energy, Elsevier, vol. 248(C), pages 626-639.
- Li, Jinzhou & Lu, An & Xie, Yu & Yang, Junfeng & Zhang, Chunhua, 2024. "Auto-ignition characteristics of coal-based naphtha," Applied Energy, Elsevier, vol. 359(C).
- Zhou, Lei & Hua, Jianxiong & Liu, Feng & Liu, Fengnian & Feng, Dengquan & Wei, Haiqiao, 2018. "Effect of internal exhaust gas recirculation on the combustion characteristics of gasoline compression ignition engine under low to idle conditions," Energy, Elsevier, vol. 164(C), pages 306-315.
More about this item
Keywords
Gasoline direction injection; Auto-ignition; Naphtha; Gasoline surrogate; Constant volume combustion chamber;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:170:y:2019:i:c:p:375-390. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.