IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v169y2019icp1039-1053.html
   My bibliography  Save this article

Acceleration curve optimization for electric vehicle based on energy consumption and battery life

Author

Listed:
  • Li, Lifu
  • Liu, Qin

Abstract

The existing research of electric vehicle acceleration curves optimization mainly focuses on minimum energy consumption, without considering the battery life. This paper focuses on solving a multi-objective optimization problem with two conflicting objectives: minimization of energy consumption per kilometer and minimization of percentage of battery capacity loss per kilometer during acceleration process. The influence of the number and the variation trend of accelerations on these two objectives are simultaneously considered, and the acceleration curves are optimized using the fast elitist non-dominated sorting genetic algorithm. The results obtained are selected by using the fuzzy theory. The results show that for the acceleration condition with zero initial velocity, the energy consumption per kilometer and the percentage of battery capacity loss per kilometer of multiple accelerations curves above the original acceleration curves all decreases. While for the high acceleration condition where initial velocity is not zero, the energy saving effect of the optimized multiple accelerations curves above the original condition is not obvious. Then, we analyze the reasons for energy consumption difference, and it is found that energy consumption per kilometer in overcoming accelerating resistance for optimization curves is much less than original condition for low velocity. It is also found that energy consumption per kilometer in accelerating resistance and aerodynamic resistance is large for high velocity, and there is little difference between optimized multiple accelerations curves and original condition.

Suggested Citation

  • Li, Lifu & Liu, Qin, 2019. "Acceleration curve optimization for electric vehicle based on energy consumption and battery life," Energy, Elsevier, vol. 169(C), pages 1039-1053.
  • Handle: RePEc:eee:energy:v:169:y:2019:i:c:p:1039-1053
    DOI: 10.1016/j.energy.2018.12.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218324319
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.12.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castaings, Ali & Lhomme, Walter & Trigui, Rochdi & Bouscayrol, Alain, 2016. "Comparison of energy management strategies of a battery/supercapacitors system for electric vehicle under real-time constraints," Applied Energy, Elsevier, vol. 163(C), pages 190-200.
    2. Liu, Kai & Wang, Jiangbo & Yamamoto, Toshiyuki & Morikawa, Takayuki, 2016. "Modelling the multilevel structure and mixed effects of the factors influencing the energy consumption of electric vehicles," Applied Energy, Elsevier, vol. 183(C), pages 1351-1360.
    3. Koubaa, Rayhane & krichen, Lotfi, 2017. "Double layer metaheuristic based energy management strategy for a Fuel Cell/Ultra-Capacitor hybrid electric vehicle," Energy, Elsevier, vol. 133(C), pages 1079-1093.
    4. Dai, Haifeng & Yu, Chenchen & Wei, Xuezhe & Sun, Zechang, 2017. "State of charge estimation for lithium-ion pouch batteries based on stress measurement," Energy, Elsevier, vol. 129(C), pages 16-27.
    5. Enjian Yao & Zhiqiang Yang & Yuanyuan Song & Ting Zuo, 2013. "Comparison of Electric Vehicle’s Energy Consumption Factors for Different Road Types," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-7, December.
    6. Khayyam, Hamid & Bab-Hadiashar, Alireza, 2014. "Adaptive intelligent energy management system of plug-in hybrid electric vehicle," Energy, Elsevier, vol. 69(C), pages 319-335.
    7. Zhao, Xin & Doering, Otto C. & Tyner, Wallace E., 2015. "The economic competitiveness and emissions of battery electric vehicles in China," Applied Energy, Elsevier, vol. 156(C), pages 666-675.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    2. Liu, Qin & Zhang, Wencan & Zhang, Zhongbo & Qin, Qichao, 2022. "A drive system global control strategy for electric vehicle based on optimized acceleration curve," Energy, Elsevier, vol. 248(C).
    3. Yiwen Zhou & Fengxiang Guo & Simin Wu & Wenyao He & Xuefei Xiong & Zheng Chen & Dingan Ni, 2022. "Safety and Economic Evaluations of Electric Public Buses Based on Driving Behavior," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    4. Yang, Lan & Hu, Zhiqiang & Wang, Liang & Liu, Yang & He, Jiangbo & Qu, Xiaobo & Zhao, Xiangmo & Fang, Shan, 2024. "Entire route eco-driving method for electric bus based on rule-based reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
    5. Lin, Cheng & Zhao, Mingjie & Pan, Hong & Yi, Jiang, 2019. "Blending gear shift strategy design and comparison study for a battery electric city bus with AMT," Energy, Elsevier, vol. 185(C), pages 1-14.
    6. Gurusamy, Azhaganathan & Ashok, Bragadeshwaran & Alsaif, Faisal & Suresh, Vishnu, 2024. "Multifaceted multi-criteria decision making framework to prioritise the electric two-wheelers based on standard and regional driving cycles," Energy, Elsevier, vol. 305(C).
    7. Yong Liu & Jimin Ni & Rong Huang & Xiuyong Shi & Zheng Xu & Yanjun Wang & Yuan Lu, 2024. "Optimization of Energy Management Strategy of a PHEV Based on Improved PSO Algorithm and Energy Flow Analysis," Sustainability, MDPI, vol. 16(20), pages 1-27, October.
    8. Li, Pengshun & Zhang, Yuhang & Zhang, Yi & Zhang, Yi & Zhang, Kai, 2021. "Prediction of electric bus energy consumption with stochastic speed profile generation modelling and data driven method based on real-world big data," Applied Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    2. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.
    3. Polychronis Spanoudakis & Gerasimos Moschopoulos & Theodoros Stefanoulis & Nikolaos Sarantinoudis & Eftichios Papadokokolakis & Ioannis Ioannou & Savvas Piperidis & Lefteris Doitsidis & Nikolaos C. Ts, 2020. "Efficient Gear Ratio Selection of a Single-Speed Drivetrain for Improved Electric Vehicle Energy Consumption," Sustainability, MDPI, vol. 12(21), pages 1-19, November.
    4. Hu, Jiayi & Li, Jianqiu & Hu, Zunyan & Xu, Liangfei & Ouyang, Minggao, 2021. "Power distribution strategy of a dual-engine system for heavy-duty hybrid electric vehicles using dynamic programming," Energy, Elsevier, vol. 215(PA).
    5. Xiang, Changle & Ding, Feng & Wang, Weida & He, Wei, 2017. "Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control," Applied Energy, Elsevier, vol. 189(C), pages 640-653.
    6. Adriana Skuza & Emilia M. Szumska & Rafał Jurecki & Artur Pawelec, 2024. "Modeling the Impact of Traffic Parameters on Electric Vehicle Energy Consumption," Energies, MDPI, vol. 17(21), pages 1-19, October.
    7. Haochen Xu & Niaona Zhang & Zonghao Li & Zichang Zhuo & Ye Zhang & Yilei Zhang & Haitao Ding, 2023. "Energy-Saving Speed Planning for Electric Vehicles Based on RHRL in Car following Scenarios," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    8. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Sun, Lishan & Huang, Yuchen & Liu, Shuli & Chen, Yanyan & Yao, Liya & Kashyap, Anil, 2017. "A completive survey study on the feasibility and adaptation of EVs in Beijing, China," Applied Energy, Elsevier, vol. 187(C), pages 128-139.
    10. Ku, Donggyun & Choi, Minje & Yoo, Nakyoung & Shin, Seungheon & Lee, Seungjae, 2021. "A new algorithm for eco-friendly path guidance focused on electric vehicles," Energy, Elsevier, vol. 233(C).
    11. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    12. Mpho J. Lencwe & Shyama P. Chowdhury & Thomas O. Olwal, 2018. "A Multi-Stage Approach to a Hybrid Lead Acid Battery and Supercapacitor System for Transport Vehicles," Energies, MDPI, vol. 11(11), pages 1-16, October.
    13. Xiong, Rui & Duan, Yanzhou & Cao, Jiayi & Yu, Quanqing, 2018. "Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle," Applied Energy, Elsevier, vol. 217(C), pages 153-165.
    14. Shangfeng Han & Baosheng Zhang & Xiaoyang Sun & Song Han & Mikael Höök, 2017. "China’s Energy Transition in the Power and Transport Sectors from a Substitution Perspective," Energies, MDPI, vol. 10(5), pages 1-25, April.
    15. Wang, Bin & Xu, Jun & Cao, Binggang & Ning, Bo, 2017. "Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 596-608.
    16. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Hong Gao & Kai Liu & Xinchao Peng & Cheng Li, 2020. "Optimal Location of Fast Charging Stations for Mixed Traffic of Electric Vehicles and Gasoline Vehicles Subject to Elastic Demands," Energies, MDPI, vol. 13(8), pages 1-16, April.
    18. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    19. Hegazy, Omar & Barrero, Ricardo & Van den Bossche, Peter & El Baghdadi, Mohamed & Smekens, Jelle & Van Mierlo, Joeri & Vriens, Wouter & Bogaerts, Bruno, 2016. "Modeling, analysis and feasibility study of new drivetrain architectures for off-highway vehicles," Energy, Elsevier, vol. 109(C), pages 1056-1074.
    20. Feng, Zhanyu & Zhang, Jian & Jiang, Han & Yao, Xuejian & Qian, Yu & Zhang, Haiyan, 2024. "Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework," Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:169:y:2019:i:c:p:1039-1053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.