IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i20p9017-d1501352.html
   My bibliography  Save this article

Optimization of Energy Management Strategy of a PHEV Based on Improved PSO Algorithm and Energy Flow Analysis

Author

Listed:
  • Yong Liu

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Jimin Ni

    (College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China)

  • Rong Huang

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Xiuyong Shi

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Zheng Xu

    (SAIC MOTOR R&D Innovation Headquarters, SAIC MOTOR, Shanghai 201804, China)

  • Yanjun Wang

    (SAIC MOTOR R&D Innovation Headquarters, SAIC MOTOR, Shanghai 201804, China)

  • Yuan Lu

    (SAIC MOTOR R&D Innovation Headquarters, SAIC MOTOR, Shanghai 201804, China)

Abstract

Single-gear-ratio plug-in hybrid vehicles (SRPHEVs) are favored by major manufacturers due to their excellent energy-saving potential, simple structure, ease of maintenance and control, great cost-saving potential, and the benefits of vehicle lightweighting. Implementing an energy management strategy (EMS) is the key to realizing the energy-saving potential of PHEVs. In this paper, based on a newly developed coaxial configuration, P1-P3 SRPHEV, with the purpose of reducing PHEV fuel consumption, the advantages of various methods were synthesized. An improved intelligent optimization algorithm, the Particle Swarm Optimization (PSO) algorithm, was used to find the optimal rule-based strategy parameters. The PSO algorithm could be easily adjusted to the parameters and obtains the desired results quickly. Different long-distance speed profiles tested under real-world driving cycle (RDC) conditions were used to validate the fuel savings. And an energy flow analysis was conducted to further investigate the reasons for the algorithm optimization. The results show that the optimization plans of the PSO algorithm in different cycle conditions can improve the equivalent fuel consumption of vehicles in different long-distance conditions. Considering the optimization effect of the equivalent fuel consumption and actual fuel consumption, the best case of the equivalent fuel consumption is improved by 2.98%, and the actual fuel consumption is improved by 2.37%. Through the energy flow analysis, it is found that the energy-saving effect of the optimization plan lies in the following principle: lowering the parallel mode switching threshold to increase the parallel mode usage time and to reduce the fuel–mechanical–electrical transmission path loss, resulting in increasing the energy utilization of the whole vehicle.

Suggested Citation

  • Yong Liu & Jimin Ni & Rong Huang & Xiuyong Shi & Zheng Xu & Yanjun Wang & Yuan Lu, 2024. "Optimization of Energy Management Strategy of a PHEV Based on Improved PSO Algorithm and Energy Flow Analysis," Sustainability, MDPI, vol. 16(20), pages 1-27, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:9017-:d:1501352
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/20/9017/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/20/9017/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Bin & Rathod, Dhruvang & Zhang, Darui & Yebi, Adamu & Zhang, Xueyu & Li, Xiaoya & Filipi, Zoran, 2020. "Parametric study on reinforcement learning optimized energy management strategy for a hybrid electric vehicle," Applied Energy, Elsevier, vol. 259(C).
    2. Pier Giuseppe Anselma, 2022. "Dynamic Programming Based Rapid Energy Management of Hybrid Electric Vehicles with Constraints on Smooth Driving, Battery State-of-Charge and Battery State-of-Health," Energies, MDPI, vol. 15(5), pages 1-25, February.
    3. Umberto Previti & Sebastian Brusca & Antonio Galvagno & Fabio Famoso, 2022. "Influence of Energy Management System Control Strategies on the Battery State of Health in Hybrid Electric Vehicles," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    4. Hou, Cong & Ouyang, Minggao & Xu, Liangfei & Wang, Hewu, 2014. "Approximate Pontryagin’s minimum principle applied to the energy management of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 115(C), pages 174-189.
    5. Wu, Jingda & He, Hongwen & Peng, Jiankun & Li, Yuecheng & Li, Zhanjiang, 2018. "Continuous reinforcement learning of energy management with deep Q network for a power split hybrid electric bus," Applied Energy, Elsevier, vol. 222(C), pages 799-811.
    6. Yang, Yalian & Hu, Xiaosong & Pei, Huanxin & Peng, Zhiyuan, 2016. "Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: Dynamic programming approach," Applied Energy, Elsevier, vol. 168(C), pages 683-690.
    7. Zhang, Shuo & Xiong, Rui & Sun, Fengchun, 2017. "Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system," Applied Energy, Elsevier, vol. 185(P2), pages 1654-1662.
    8. Aissa Benhammou & Hamza Tedjini & Mohammed Amine Hartani & Rania M. Ghoniem & Ali Alahmer, 2023. "Accurate and Efficient Energy Management System of Fuel Cell/Battery/Supercapacitor/AC and DC Generators Hybrid Electric Vehicles," Sustainability, MDPI, vol. 15(13), pages 1-27, June.
    9. Li, Lifu & Liu, Qin, 2019. "Acceleration curve optimization for electric vehicle based on energy consumption and battery life," Energy, Elsevier, vol. 169(C), pages 1039-1053.
    10. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    11. Chen, Bo-Chiuan & Wu, Yuh-Yih & Tsai, Hsien-Chi, 2014. "Design and analysis of power management strategy for range extended electric vehicle using dynamic programming," Applied Energy, Elsevier, vol. 113(C), pages 1764-1774.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Geng, Wenran & Lou, Diming & Wang, Chen & Zhang, Tong, 2020. "A cascaded energy management optimization method of multimode power-split hybrid electric vehicles," Energy, Elsevier, vol. 199(C).
    3. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    4. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    5. Wang, Yue & Zeng, Xiaohua & Song, Dafeng & Yang, Nannan, 2019. "Optimal rule design methodology for energy management strategy of a power-split hybrid electric bus," Energy, Elsevier, vol. 185(C), pages 1086-1099.
    6. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    7. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    8. Zhang, Hailong & Peng, Jiankun & Tan, Huachun & Dong, Hanxuan & Ding, Fan & Ran, Bin, 2020. "Tackling SOC long-term dynamic for energy management of hybrid electric buses via adaptive policy optimization," Applied Energy, Elsevier, vol. 269(C).
    9. Xu, Yueru & Zheng, Yuan & Yang, Ying, 2021. "On the movement simulations of electric vehicles: A behavioral model-based approach," Applied Energy, Elsevier, vol. 283(C).
    10. Jen-Chiun Guan & Bo-Chiuan Chen & Yuh-Yih Wu, 2019. "Design of an Adaptive Power Management Strategy for Range Extended Electric Vehicles," Energies, MDPI, vol. 12(9), pages 1-24, April.
    11. Qi, Chunyang & Song, Chuanxue & Xiao, Feng & Song, Shixin, 2022. "Generalization ability of hybrid electric vehicle energy management strategy based on reinforcement learning method," Energy, Elsevier, vol. 250(C).
    12. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    14. Matteo Acquarone & Claudio Maino & Daniela Misul & Ezio Spessa & Antonio Mastropietro & Luca Sorrentino & Enrico Busto, 2023. "Influence of the Reward Function on the Selection of Reinforcement Learning Agents for Hybrid Electric Vehicles Real-Time Control," Energies, MDPI, vol. 16(6), pages 1-22, March.
    15. Yang, Ningkang & Han, Lijin & Xiang, Changle & Liu, Hui & Li, Xunmin, 2021. "An indirect reinforcement learning based real-time energy management strategy via high-order Markov Chain model for a hybrid electric vehicle," Energy, Elsevier, vol. 236(C).
    16. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    17. Xingyue Jiang & Jianjun Hu & Meixia Jia & Yong Zheng, 2018. "Parameter Matching and Instantaneous Power Allocation for the Hybrid Energy Storage System of Pure Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, July.
    18. Chen, Zheng & Hu, Hengjie & Wu, Yitao & Zhang, Yuanjian & Li, Guang & Liu, Yonggang, 2020. "Stochastic model predictive control for energy management of power-split plug-in hybrid electric vehicles based on reinforcement learning," Energy, Elsevier, vol. 211(C).
    19. Chaofeng Pan & Yanyan Liang & Long Chen & Liao Chen, 2019. "Optimal Control for Hybrid Energy Storage Electric Vehicle to Achieve Energy Saving Using Dynamic Programming Approach," Energies, MDPI, vol. 12(4), pages 1-19, February.
    20. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:9017-:d:1501352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.