IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v9y2014i1p1-19..html
   My bibliography  Save this article

Water desalination technologies utilizing conventional and renewable energy sources

Author

Listed:
  • Mahmoud Shatat
  • Saffa B. Riffat

Abstract

Water is one of the earth's most abundant resources, covering about three-quarters of the planet's surface. Yet, there is an acute shortage of potable water in many countries, especially in Africa and the Middle East region. The reason for this apparent contradiction is, of course, that ∼97.5% of the earth's water is salt water in the oceans and only 2.5% is fresh water in ground water, lakes and rivers and this supplies most human and animal needs. Tackling the water scarcity problem must involve better and more economic ways of desalinating seawater. This article presents a comprehensive review of water desalination systems, whether operated by conventional energy or renewable energy, to convert saline water into fresh water. These systems comprise the thermal phase change and membrane processes, in addition to some alternative processes. Thermal processes include the multistage flash, multiple effects boiling and vapour compression, cogeneration and solar distillation, while the membrane processes include reverse osmosis, electrodialysis and membrane distillation. It also covers the integration into desalination systems of potential renewable energy resources, including solar energy, wind and geothermal energy. Such systems are increasingly attractive in the Middle East and Africa, areas suffering from shortages of fresh water but where solar energy is plentiful and where operational and maintenance costs are low. The advantages and disadvantages, including the economic and environmental aspects, of these desalination systems are presented.

Suggested Citation

  • Mahmoud Shatat & Saffa B. Riffat, 2014. "Water desalination technologies utilizing conventional and renewable energy sources," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 9(1), pages 1-19.
  • Handle: RePEc:oup:ijlctc:v:9:y:2014:i:1:p:1-19.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/cts025
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed, A.S.A. & Shahdy, Abanob G. & Mohamed, Hany A. & Ahmed, M. Salem, 2023. "A comprehensive review of the vacuum solar still systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Rosales-Asensio, Enrique & Borge-Diez, David & Pérez-Hoyos, Ana & Colmenar-Santos, Antonio, 2019. "Reduction of water cost for an existing wind-energy-based desalination scheme: A preliminary configuration," Energy, Elsevier, vol. 167(C), pages 548-560.
    3. Catherine I. Birney & Michael C. Jones & Michael E. Webber, 2019. "A Spatially Resolved Thermodynamic Assessment of Geothermal Powered Multi-Effect Brackish Water Distillation in Texas," Resources, MDPI, vol. 8(2), pages 1-20, April.
    4. Ismail, Mohamed M. & Dincer, Ibrahim, 2023. "A new renewable energy based integrated gasification system for hydrogen production from plastic wastes," Energy, Elsevier, vol. 270(C).
    5. Noor Juma Al Balushi & Jagdeep Kumar Nayak & Sadik Rahman & Ahmad Sana & Abdullah Al-Mamun, 2022. "A Comprehensive Study on Air-Cathode Limitations and Its Mitigation Strategies in Microbial Desalination Cell—A Review," Energies, MDPI, vol. 15(20), pages 1-18, October.
    6. Jamil, Furqan & Hassan, Faisal & Shoeibi, Shahin & Khiadani, Mehdi, 2023. "Application of advanced energy storage materials in direct solar desalination: A state of art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    7. Molinos-Senante, María & González, Diego, 2019. "Evaluation of the economics of desalination by integrating greenhouse gas emission costs: An empirical application for Chile," Renewable Energy, Elsevier, vol. 133(C), pages 1327-1337.
    8. Date, Abhijit & Gauci, Luke & Chan, Raymond & Date, Ashwin, 2015. "Performance review of a novel combined thermoelectric power generation and water desalination system," Renewable Energy, Elsevier, vol. 83(C), pages 256-269.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:9:y:2014:i:1:p:1-19.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.