IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v30y2005i8p1283-1303.html
   My bibliography  Save this article

Systemic approach for techno-economic evaluation of triple hybrid (RO, MSF and power generation) scheme including accounting of CO2 emission

Author

Listed:
  • Agashichev, Sergei P.
  • El-Nashar, Ali M.

Abstract

A system of models for the techno-economic evaluation of a triple hybrid, reverse osmosis (RO), multistage flush (MSF) and power generation process has been developed. There are three groups of models underlying the system: (A) models describing power-generating technology; (B) models describing RO desalination, and (C) models describing MSF desalination. Any group of individual models, in turn, consists of a set of submodels of different hierarchy levels; they are: (1) technological submodel, (2) fuel or energy submodel, (3) ecological submodel and (4) economic submodel. (1) The technological submodel is focused on the calculation of technological characteristics at different operating loads of the generating systems; (2) the fuel or energy submodel covers the calculation of fuel influx into power-generating systems at different operating loads; (3) the ecological submodel focuses on estimation of CO2 emissions at different operating regimes; (4) the economic submodel gives values of economic indicators, such as (a) cost of water, (b) cost of energy, and (c) accounting for CO2 emissions through imposed carbon tax (assuming rates of environmental taxes recommended by European Union tax legislation). This paper contains an analysis of the behavior of economic and ecological indicators for various technological parameters and economic assumptions, such as (1) load, specific fuel consumption and efficiency of the energy generating system, (2) specific energy consumption for desalination, (3) specific emissions of CO2, and (4) taxes on CO2 emissions. The model presented can be applied for the analysis of schemes where seasonal surplus of unused power is utilized by RO which are characterized by higher efficiency of fuel consumption and decreasing specific CO2 emissions.

Suggested Citation

  • Agashichev, Sergei P. & El-Nashar, Ali M., 2005. "Systemic approach for techno-economic evaluation of triple hybrid (RO, MSF and power generation) scheme including accounting of CO2 emission," Energy, Elsevier, vol. 30(8), pages 1283-1303.
  • Handle: RePEc:eee:energy:v:30:y:2005:i:8:p:1283-1303
    DOI: 10.1016/j.energy.2004.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204000428
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ayres, Robert U., 1998. "Eco-thermodynamics: economics and the second law," Ecological Economics, Elsevier, vol. 26(2), pages 189-209, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Chending & Zhang, Na & Lior, Noam & Lin, Hu, 2011. "Proposal and analysis of a dual-purpose system integrating a chemically recuperated gas turbine cycle with thermal seawater desalination," Energy, Elsevier, vol. 36(6), pages 3791-3803.
    2. Karagiannis, Ioannis C. & Soldatos, Peter G., 2010. "Estimation of critical CO2 values when planning the power source in water desalination: The case of the small Aegean islands," Energy Policy, Elsevier, vol. 38(8), pages 3891-3897, August.
    3. Rosales-Asensio, Enrique & Borge-Diez, David & Pérez-Hoyos, Ana & Colmenar-Santos, Antonio, 2019. "Reduction of water cost for an existing wind-energy-based desalination scheme: A preliminary configuration," Energy, Elsevier, vol. 167(C), pages 548-560.
    4. González-Bravo, Ramón & Nápoles-Rivera, Fabricio & Ponce-Ortega, José María & El-Halwagi, Mahmoud M., 2015. "Involving integrated seawater desalination-power plants in the optimal design of water distribution networks," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 181-193.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Florian Fizaine & Victor Court, 2016. "The energy-economic growth relationship: a new insight from the EROI perspective," Working Papers 1601, Chaire Economie du climat.
    2. Jeroen van den Bergh & John Gowdy, 2000. "Evolutionary Theories in Environmental and Resource Economics: Approaches and Applications," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 17(1), pages 37-57, September.
    3. Sousa, Tania & Domingos, Tiago, 2006. "Is neoclassical microeconomics formally valid? An approach based on an analogy with equilibrium thermodynamics," Ecological Economics, Elsevier, vol. 58(1), pages 160-169, June.
    4. Clive L. Spash, 2013. "The Ecological Economics of Boulding's Spaceship Earth," SRE-Disc sre-disc-2013_02, Institute for Multilevel Governance and Development, Department of Socioeconomics, Vienna University of Economics and Business.
    5. Foster, John, 2011. "Energy, aesthetics and knowledge in complex economic systems," Journal of Economic Behavior & Organization, Elsevier, vol. 80(1), pages 88-100.
    6. Victor Court & Pierre-André Jouvet & Frédéric Lantz, 2015. "Endogenous economic growth, EROI, and transition towards renewable energy," Working Papers 1507, Chaire Economie du climat.
    7. BoroumandJazi, G. & Rismanchi, B. & Saidur, R., 2013. "A review on exergy analysis of industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 198-203.
    8. Valero, Alicia & Valero, Antonio & Calvo, Guiomar, 2015. "Using thermodynamics to improve the resource efficiency indicator GDP/DMC," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 110-117.
    9. Mark Roseland & Maria Spiliotopoulou, 2016. "Converging Urban Agendas: Toward Healthy and Sustainable Communities," Social Sciences, MDPI, vol. 5(3), pages 1-20, July.
    10. Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
    11. Agudelo, Andrés & Valero, Antonio & Torres, César, 2012. "Allocation of waste cost in thermoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 634-643.
    12. Ayres, Robert U., 2004. "On the life cycle metaphor: where ecology and economics diverge," Ecological Economics, Elsevier, vol. 48(4), pages 425-438, April.
    13. Remig, Moritz C., 2017. "Structured pluralism in ecological economics — A reply to Peter Söderbaum's commentary," Ecological Economics, Elsevier, vol. 131(C), pages 533-537.
    14. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    15. Sorguven, Esra & Özilgen, Mustafa, 2010. "Thermodynamic assessment of algal biodiesel utilization," Renewable Energy, Elsevier, vol. 35(9), pages 1956-1966.
    16. Ukidwe, Nandan U. & Bakshi, Bhavik R., 2007. "Industrial and ecological cumulative exergy consumption of the United States via the 1997 input–output benchmark model," Energy, Elsevier, vol. 32(9), pages 1560-1592.
    17. Ke Wang & Zhifu Mi & Yi‐Ming Wei, 2019. "Will Pollution Taxes Improve Joint Ecological and Economic Efficiency of Thermal Power Industry in China?: A DEA‐Based Materials Balance Approach," Journal of Industrial Ecology, Yale University, vol. 23(2), pages 389-401, April.
    18. Jack Miller & Timothy J. Foxon & Steve Sorrell, 2016. "Exergy Accounting: A Quantitative Comparison of Methods and Implications for Energy-Economy Analysis," Energies, MDPI, vol. 9(11), pages 1-22, November.
    19. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    20. Temmes, Armi & Peck, Philip, 2020. "Do forest biorefineries fit with working principles of a circular bioeconomy? A case of Finnish and Swedish initiatives," Forest Policy and Economics, Elsevier, vol. 110(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:30:y:2005:i:8:p:1283-1303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.