IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v124y2017icp321-329.html
   My bibliography  Save this article

Structural and thermal properties of Populus tomentosa during carbon dioxide torrefaction

Author

Listed:
  • Li, Shu-Xian
  • Zou, Jin-Ying
  • Li, Ming-Fei
  • Wu, Xiao-Fei
  • Bian, Jing
  • Xue, Zhi-Min

Abstract

Populus tomentosa was torrefied under carbon dioxide in a tubular reactor to investigate the effects of temperature (240–320 °C) and reaction time (30–120 min) on the solid char. The influences of the reaction conditions on mass yield, energy yield and higher heating value (HHV) were investigated by using response surface methodology. The structural and thermal properties of the torrefied poplar were comprehensively characterized with multiple techniques. Results indicated that torrefaction temperature showed a greater influence on mass yield, energy yield and HHV than time. Torrefaction led to substantial changes of the structural properties of poplar, as evidenced by the variation of microstructure, elements, and CrI value. The torrefied sample showed good thermal stability as determined by the thermal analysis. In addition, the combustion reactivity increased from 4.13%/(min °C) in the raw material to 4.98%/(min °C) for the sample subjected to torrefaction at 280 °C for 75 min. The data provides meaningful insight on the upgradation of poplar through torrefaction.

Suggested Citation

  • Li, Shu-Xian & Zou, Jin-Ying & Li, Ming-Fei & Wu, Xiao-Fei & Bian, Jing & Xue, Zhi-Min, 2017. "Structural and thermal properties of Populus tomentosa during carbon dioxide torrefaction," Energy, Elsevier, vol. 124(C), pages 321-329.
  • Handle: RePEc:eee:energy:v:124:y:2017:i:c:p:321-329
    DOI: 10.1016/j.energy.2017.02.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217302530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.02.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    2. Sabil, Khalik M. & Aziz, Muafah A. & Lal, Bhajan & Uemura, Yoshimitsu, 2013. "Synthetic indicator on the severity of torrefaction of oil palm biomass residues through mass loss measurement," Applied Energy, Elsevier, vol. 111(C), pages 821-826.
    3. Chew, J.J. & Doshi, V., 2011. "Recent advances in biomass pretreatment – Torrefaction fundamentals and technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4212-4222.
    4. Eyerusalem M. Gucho & Khurram Shahzad & Eddy A. Bramer & Niaz A. Akhtar & Gerrit Brem, 2015. "Experimental Study on Dry Torrefaction of Beech Wood and Miscanthus," Energies, MDPI, vol. 8(5), pages 1-21, May.
    5. Chen, Wei-Hsin & Hsu, Huan-Chun & Lu, Ke-Miao & Lee, Wen-Jhy & Lin, Ta-Chang, 2011. "Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass," Energy, Elsevier, vol. 36(5), pages 3012-3021.
    6. Chen, Wei-Hsin & Lu, Ke-Miao & Lee, Wen-Jhy & Liu, Shih-Hsien & Lin, Ta-Chang, 2014. "Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass," Applied Energy, Elsevier, vol. 114(C), pages 104-113.
    7. Madanayake, Buddhike Neminda & Gan, Suyin & Eastwick, Carol & Ng, Hoon Kiat, 2016. "Thermochemical and structural changes in Jatropha curcas seed cake during torrefaction for its use as coal co-firing feedstock," Energy, Elsevier, vol. 100(C), pages 262-272.
    8. Chen, Wei-Hsin & Kuo, Po-Chih & Liu, Shih-Hsien & Wu, Wei, 2014. "Thermal characterization of oil palm fiber and eucalyptus in torrefaction," Energy, Elsevier, vol. 71(C), pages 40-48.
    9. Chen, Wei-Hsin & Cheng, Wen-Yi & Lu, Ke-Miao & Huang, Ying-Pin, 2011. "An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction," Applied Energy, Elsevier, vol. 88(11), pages 3636-3644.
    10. Thanapal, Siva Sankar & Annamalai, Kalyan & Sweeten, John M. & Gordillo, Gerardo, 2012. "Fixed bed gasification of dairy biomass with enriched air mixture," Applied Energy, Elsevier, vol. 97(C), pages 525-531.
    11. Chen, Wei-Hsin & Lu, Ke-Miao & Tsai, Chi-Ming, 2012. "An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction," Applied Energy, Elsevier, vol. 100(C), pages 318-325.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sukiran, Mohamad Azri & Wan Daud, Wan Mohd Ashri & Abnisa, Faisal & Nasrin, Abu Bakar & Abdul Aziz, Astimar & Loh, Soh Kheang, 2021. "A comprehensive study on torrefaction of empty fruit bunches: Characterization of solid, liquid and gas products," Energy, Elsevier, vol. 230(C).
    2. Jeeban Poudel & Sujeeta Karki & Sea Cheon Oh, 2018. "Valorization of Waste Wood as a Solid Fuel by Torrefaction," Energies, MDPI, vol. 11(7), pages 1-10, June.
    3. Kutlu, O. & Kocar, G., 2020. "Improving stability of torrefied biomass at cooling stage," Renewable Energy, Elsevier, vol. 147(P1), pages 814-823.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barskov, Stan & Zappi, Mark & Buchireddy, Prashanth & Dufreche, Stephen & Guillory, John & Gang, Daniel & Hernandez, Rafael & Bajpai, Rakesh & Baudier, Jeff & Cooper, Robbyn & Sharp, Richard, 2019. "Torrefaction of biomass: A review of production methods for biocoal from cultured and waste lignocellulosic feedstocks," Renewable Energy, Elsevier, vol. 142(C), pages 624-642.
    2. Gan, Yong Yang & Ong, Hwai Chyuan & Ling, Tau Chuan & Chen, Wei-Hsin & Chong, Cheng Tung, 2019. "Torrefaction of de-oiled Jatropha seed kernel biomass for solid fuel production," Energy, Elsevier, vol. 170(C), pages 367-374.
    3. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    4. Chen, Wei-Hsin & Liu, Shih-Hsien & Juang, Tarng-Tzuen & Tsai, Chi-Ming & Zhuang, Yi-Qing, 2015. "Characterization of solid and liquid products from bamboo torrefaction," Applied Energy, Elsevier, vol. 160(C), pages 829-835.
    5. Jau-Jang Lu & Wei-Hsin Chen, 2013. "Product Yields and Characteristics of Corncob Waste under Various Torrefaction Atmospheres," Energies, MDPI, vol. 7(1), pages 1-15, December.
    6. Bach, Quang-Vu & Skreiberg, Øyvind, 2016. "Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 665-677.
    7. Bach, Quang-Vu & Skreiberg, Øyvind & Lee, Chul-Jin, 2017. "Process modeling and optimization for torrefaction of forest residues," Energy, Elsevier, vol. 138(C), pages 348-354.
    8. Wilk, Małgorzata & Magdziarz, Aneta & Kalemba, Izabela, 2015. "Characterisation of renewable fuels' torrefaction process with different instrumental techniques," Energy, Elsevier, vol. 87(C), pages 259-269.
    9. Wilk, Małgorzata & Magdziarz, Aneta & Kalemba, Izabela & Gara, Paweł, 2016. "Carbonisation of wood residue into charcoal during low temperature process," Renewable Energy, Elsevier, vol. 85(C), pages 507-513.
    10. Zhang, Congyu & Ho, Shih-Hsin & Chen, Wei-Hsin & Xie, Youping & Liu, Zhenquan & Chang, Jo-Shu, 2018. "Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index," Applied Energy, Elsevier, vol. 220(C), pages 598-604.
    11. Ubando, Aristotle T. & Rivera, Diana Rose T. & Chen, Wei-Hsin & Culaba, Alvin B., 2020. "Life cycle assessment of torrefied microalgal biomass using torrefaction severity index with the consideration of up-scaling production," Renewable Energy, Elsevier, vol. 162(C), pages 1113-1124.
    12. Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Chen, Wei-Hsin & Lu, Ke-Miao & Lee, Wen-Jhy & Liu, Shih-Hsien & Lin, Ta-Chang, 2014. "Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass," Applied Energy, Elsevier, vol. 114(C), pages 104-113.
    14. Abdulyekeen, Kabir Abogunde & Umar, Ahmad Abulfathi & Patah, Muhamad Fazly Abdul & Daud, Wan Mohd Ashri Wan, 2021. "Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    15. Lu, Ke-Miao & Lee, Wen-Jhy & Chen, Wei-Hsin & Lin, Ta-Chang, 2013. "Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends," Applied Energy, Elsevier, vol. 105(C), pages 57-65.
    16. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    17. Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
    18. Ping Wang & Bret H. Howard, 2017. "Impact of Thermal Pretreatment Temperatures on Woody Biomass Chemical Composition, Physical Properties and Microstructure," Energies, MDPI, vol. 11(1), pages 1-20, December.
    19. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Singh, Rishikesh Kumar & Chakraborty, Jyoti Prasad & Sarkar, Arnab, 2020. "Optimizing the torrefaction of pigeon pea stalk (cajanus cajan) using response surface methodology (RSM) and characterization of solid, liquid and gaseous products," Renewable Energy, Elsevier, vol. 155(C), pages 677-690.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:124:y:2017:i:c:p:321-329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.