IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v164y2018icp236-263.html
   My bibliography  Save this article

Crossing CO2 equator with the aid of multi-ejector concept: A comprehensive energy and environmental comparative study

Author

Listed:
  • Gullo, Paride
  • Tsamos, Konstantinos M.
  • Hafner, Armin
  • Banasiak, Krzysztof
  • Ge, Yunting T.
  • Tassou, Savvas A.

Abstract

The ever-stricter regulations put into effect worldwide to significantly decrease the considerable carbon footprint of commercial refrigeration sector have forced the transition to eco-friendlier working fluids (e.g. CO2, R290, R1234ze(E), R450A, R513A). However, the identification of the most suitable long-term refrigerant is still today's major challenge for supermarkets located in high ambient temperature countries, especially as their air conditioning (AC) need is considered.

Suggested Citation

  • Gullo, Paride & Tsamos, Konstantinos M. & Hafner, Armin & Banasiak, Krzysztof & Ge, Yunting T. & Tassou, Savvas A., 2018. "Crossing CO2 equator with the aid of multi-ejector concept: A comprehensive energy and environmental comparative study," Energy, Elsevier, vol. 164(C), pages 236-263.
  • Handle: RePEc:eee:energy:v:164:y:2018:i:c:p:236-263
    DOI: 10.1016/j.energy.2018.08.205
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218317419
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.205?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alberto Cavallini & Claudio Zilio, 2007. "Carbon dioxide as a natural refrigerant," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 2(3), pages 225-249, July.
    2. Jesús Catalán-Gil & Daniel Sánchez & Rodrigo Llopis & Laura Nebot-Andrés & Ramón Cabello, 2018. "Energy Evaluation of Multiple Stage Commercial Refrigeration Architectures Adapted to F-Gas Regulation," Energies, MDPI, vol. 11(7), pages 1-31, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guruchethan, A.M. & Reddy, Y. Siva Kumar & Maiya, M.P. & Hafner, Armin, 2024. "Experimental investigation of multi-ejector CO2 heat pump system with and without IHX," Energy, Elsevier, vol. 297(C).
    2. Youcef Redjeb & Khatima Kaabeche-Djerafi & Anna Stoppato & Alberto Benato, 2021. "The IRC-PD Tool: A Code to Design Steam and Organic Waste Heat Recovery Units," Energies, MDPI, vol. 14(18), pages 1-37, September.
    3. Paride Gullo & Armin Hafner & Krzysztof Banasiak & Silvia Minetto & Ekaterini E. Kriezi, 2019. "Multi-Ejector Concept: A Comprehensive Review on its Latest Technological Developments," Energies, MDPI, vol. 12(3), pages 1-29, January.
    4. Ángel Á. Pardiñas & Michael Jokiel & Christian Schlemminger & Håkon Selvnes & Armin Hafner, 2021. "Modeling of a CO 2 -Based Integrated Refrigeration System for Supermarkets," Energies, MDPI, vol. 14(21), pages 1-21, October.
    5. Yulong Song & Hongsheng Xie & Mengying Yang & Xiangyu Wei & Feng Cao & Xiang Yin, 2023. "A Comprehensive Assessment of the Refrigerant Charging Amount on the Global Performance of a Transcritical CO 2 -Based Bus Air Conditioning and Heat Pump System," Energies, MDPI, vol. 16(6), pages 1-21, March.
    6. Paride Gullo & Armin Hafner & Krzysztof Banasiak, 2019. "Thermodynamic Performance Investigation of Commercial R744 Booster Refrigeration Plants Based on Advanced Exergy Analysis," Energies, MDPI, vol. 12(3), pages 1-24, January.
    7. Besagni, Giorgio, 2019. "Ejectors on the cutting edge: The past, the present and the perspective," Energy, Elsevier, vol. 170(C), pages 998-1003.
    8. Ye, Zhenhong & Yang, Jingye & Shi, Junye & Chen, Jiangping, 2020. "Thermo-economic and environmental analysis of various low-GWP refrigerants in Organic Rankine cycle system," Energy, Elsevier, vol. 199(C).
    9. Paride Gullo, 2018. "Advanced Thermodynamic Analysis of a Transcritical R744 Booster Refrigerating Unit with Dedicated Mechanical Subcooling," Energies, MDPI, vol. 11(11), pages 1-26, November.
    10. Liu, Shengchun & Lu, Fenping & Dai, Baomin & Nian, Victor & Li, Hailong & Qi, Haifeng & Li, Jiayu, 2019. "Performance analysis of two-stage compression transcritical CO2 refrigeration system with R290 mechanical subcooling unit," Energy, Elsevier, vol. 189(C).
    11. Song, Yulong & Wang, Haidan & Ma, Yuan & Yin, Xiang & Cao, Feng, 2022. "Energetic, economic, environmental investigation of carbon dioxide as the refrigeration alternative in new energy bus/railway vehicles’ air conditioning systems," Applied Energy, Elsevier, vol. 305(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank Bruno & Martin Belusko & Edward Halawa, 2019. "CO 2 Refrigeration and Heat Pump Systems—A Comprehensive Review," Energies, MDPI, vol. 12(15), pages 1-39, August.
    2. Gullo, Paride & Elmegaard, Brian & Cortella, Giovanni, 2016. "Advanced exergy analysis of a R744 booster refrigeration system with parallel compression," Energy, Elsevier, vol. 107(C), pages 562-571.
    3. Francisco Amaral & Alex Santos & Ewerton Calixto & Fernando Pessoa & Delano Santana, 2020. "Exergetic Evaluation of an Ethylene Refrigeration Cycle," Energies, MDPI, vol. 13(14), pages 1-21, July.
    4. H. Fritschi & F. Tillenkamp & R. Löhrer & M. Brügger, 2017. "Efficiency increase in carbon dioxide refrigeration technology with parallel compression," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(2), pages 171-180.
    5. Ignacio López Paniagua & Ángel Jiménez Álvaro & Javier Rodríguez Martín & Celina González Fernández & Rafael Nieto Carlier, 2019. "Comparison of Transcritical CO 2 and Conventional Refrigerant Heat Pump Water Heaters for Domestic Applications," Energies, MDPI, vol. 12(3), pages 1-17, February.
    6. J. Catalán-Gil & L. Nebot-Andrés & D. Sánchez & R. Llopis & R. Cabello & D. Calleja-Anta, 2020. "Improvements in CO 2 Booster Architectures with Different Economizer Arrangements," Energies, MDPI, vol. 13(5), pages 1-29, March.
    7. Paride Gullo & Armin Hafner & Krzysztof Banasiak & Silvia Minetto & Ekaterini E. Kriezi, 2019. "Multi-Ejector Concept: A Comprehensive Review on its Latest Technological Developments," Energies, MDPI, vol. 12(3), pages 1-29, January.
    8. Martin Belusko & Raymond Liddle & Alemu Alemu & Edward Halawa & Frank Bruno, 2019. "Performance Evaluation of a CO 2 Refrigeration System Enhanced with a Dew Point Cooler," Energies, MDPI, vol. 12(6), pages 1-22, March.
    9. Michal Haida & Rafal Fingas & Wojciech Szwajnoch & Jacek Smolka & Michal Palacz & Jakub Bodys & Andrzej J. Nowak, 2019. "An Object-Oriented R744 Two-Phase Ejector Reduced-Order Model for Dynamic Simulations," Energies, MDPI, vol. 12(7), pages 1-24, April.
    10. Daniel Sánchez & Jesús Catalán-Gil & Ramón Cabello & Daniel Calleja-Anta & Rodrigo Llopis & Laura Nebot-Andrés, 2020. "Experimental Analysis and Optimization of an R744 Transcritical Cycle Working with a Mechanical Subcooling System," Energies, MDPI, vol. 13(12), pages 1-27, June.
    11. Paride Gullo, 2018. "Advanced Thermodynamic Analysis of a Transcritical R744 Booster Refrigerating Unit with Dedicated Mechanical Subcooling," Energies, MDPI, vol. 11(11), pages 1-26, November.
    12. Gequn Shu & Chen Hu & Hua Tian & Xiaoya Li & Zhigang Yu & Mingtao Wang, 2019. "Analysis and Optimization of Coupled Thermal Management Systems Used in Vehicles," Energies, MDPI, vol. 12(7), pages 1-17, April.
    13. Zuazua-Ros, Amaia & Martín-Gómez, César & Ibañez-Puy, Elia & Vidaurre-Arbizu, Marina & Gelbstein, Yaniv, 2019. "Investigation of the thermoelectric potential for heating, cooling and ventilation in buildings: Characterization options and applications," Renewable Energy, Elsevier, vol. 131(C), pages 229-239.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:164:y:2018:i:c:p:236-263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.