IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3204-d374082.html
   My bibliography  Save this article

Experimental Analysis and Optimization of an R744 Transcritical Cycle Working with a Mechanical Subcooling System

Author

Listed:
  • Daniel Sánchez

    (Department of Mechanical Engineering and Construction, Jaume I University, E-12071 Castellón, Spain)

  • Jesús Catalán-Gil

    (Department of Mechanical Engineering and Construction, Jaume I University, E-12071 Castellón, Spain)

  • Ramón Cabello

    (Department of Mechanical Engineering and Construction, Jaume I University, E-12071 Castellón, Spain)

  • Daniel Calleja-Anta

    (Department of Mechanical Engineering and Construction, Jaume I University, E-12071 Castellón, Spain)

  • Rodrigo Llopis

    (Department of Mechanical Engineering and Construction, Jaume I University, E-12071 Castellón, Spain)

  • Laura Nebot-Andrés

    (Department of Mechanical Engineering and Construction, Jaume I University, E-12071 Castellón, Spain)

Abstract

In the last century, the refrigerant R744 (carbon dioxide) has become an environmentally friendly solution in commercial refrigeration despite its particular issues related to the low critical temperature. The use of transcritical cycles in warm and hot countries reveals the necessity of adopting different configurations and technologies to improve this specific cycle. Among these, subcooling methods are well-known techniques to enhance the cooling capacity and the Coefficient of Performance (COP) of the cycle. In this work, an R600a dedicated mechanical subcooling system has been experimentally tested in an R744 transcritical system at different operating conditions. The results have been compared with those obtained using a suction-to-liquid heat exchanger (IHX) to determine the degree of improvement of the mechanical subcooling system. Using the experimental tests, a computational model has been developed and validated to predict the optimal subcooling degree and the cubic capacity of the mechanical subcooling compressor. Finally, the model has been used to analyze the effect of using different refrigerants in the mechanical subcooling unit finding that the hydrocarbon R290 and the HFC R152a are the most suitable fluids.

Suggested Citation

  • Daniel Sánchez & Jesús Catalán-Gil & Ramón Cabello & Daniel Calleja-Anta & Rodrigo Llopis & Laura Nebot-Andrés, 2020. "Experimental Analysis and Optimization of an R744 Transcritical Cycle Working with a Mechanical Subcooling System," Energies, MDPI, vol. 13(12), pages 1-27, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3204-:d:374082
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3204/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3204/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dai, Baomin & Liu, Shengchun & Li, Hailong & Sun, Zhili & Song, Mengjie & Yang, Qianru & Ma, Yitai, 2018. "Energetic performance of transcritical CO2 refrigeration cycles with mechanical subcooling using zeotropic mixture as refrigerant," Energy, Elsevier, vol. 150(C), pages 205-221.
    2. Sánchez, D. & Cabello, R. & Llopis, R. & Torrella, E., 2012. "Development and validation of a finite element model for water – CO2 coaxial gas-coolers," Applied Energy, Elsevier, vol. 93(C), pages 637-647.
    3. Liu, Shengchun & Lu, Fenping & Dai, Baomin & Nian, Victor & Li, Hailong & Qi, Haifeng & Li, Jiayu, 2019. "Performance analysis of two-stage compression transcritical CO2 refrigeration system with R290 mechanical subcooling unit," Energy, Elsevier, vol. 189(C).
    4. Jesús Catalán-Gil & Daniel Sánchez & Rodrigo Llopis & Laura Nebot-Andrés & Ramón Cabello, 2018. "Energy Evaluation of Multiple Stage Commercial Refrigeration Architectures Adapted to F-Gas Regulation," Energies, MDPI, vol. 11(7), pages 1-31, July.
    5. Qureshi, Bilal A. & Inam, Muhammad & Antar, Mohamed A. & Zubair, Syed M., 2013. "Experimental energetic analysis of a vapor compression refrigeration system with dedicated mechanical sub-cooling," Applied Energy, Elsevier, vol. 102(C), pages 1035-1041.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artur Bieniek & Jan Kuchmacz & Karol Sztekler & Lukasz Mika & Ewelina Radomska, 2021. "A New Method of Regulating the Cooling Capacity of a Cooling System with CO 2," Energies, MDPI, vol. 14(7), pages 1-18, March.
    2. Tongchana Thongtip & Natthawut Ruangtrakoon, 2021. "Real Air-Conditioning Performance of Ejector Refrigerator Based Air-Conditioner Powered by Low Temperature Heat Source," Energies, MDPI, vol. 14(3), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jiaojiao & Zoghi, Mohammad & Zhao, Linfeng, 2022. "Thermo-economic assessment and optimization of a geothermal-driven tri-generation system for power, cooling, and hydrogen production," Energy, Elsevier, vol. 244(PB).
    2. Zendehboudi, Alireza, 2024. "Energy, exergy, and exergoeconomic analyses of an air source transcritical CO2 heat pump for simultaneous domestic hot water and space heating," Energy, Elsevier, vol. 290(C).
    3. Benlin Shi & Muqing Chen & Weikai Chi & Qichao Yang & Guangbin Liu & Yuanyang Zhao & Liansheng Li, 2022. "Effects of Internal Heat Exchanger on Two-Stage Compression Trans-Critical CO 2 Refrigeration Cycle Combined with Expander and Intercooling," Energies, MDPI, vol. 16(1), pages 1-16, December.
    4. J. Catalán-Gil & L. Nebot-Andrés & D. Sánchez & R. Llopis & R. Cabello & D. Calleja-Anta, 2020. "Improvements in CO 2 Booster Architectures with Different Economizer Arrangements," Energies, MDPI, vol. 13(5), pages 1-29, March.
    5. Michal Haida & Rafal Fingas & Wojciech Szwajnoch & Jacek Smolka & Michal Palacz & Jakub Bodys & Andrzej J. Nowak, 2019. "An Object-Oriented R744 Two-Phase Ejector Reduced-Order Model for Dynamic Simulations," Energies, MDPI, vol. 12(7), pages 1-24, April.
    6. Francisco Amaral & Alex Santos & Ewerton Calixto & Fernando Pessoa & Delano Santana, 2020. "Exergetic Evaluation of an Ethylene Refrigeration Cycle," Energies, MDPI, vol. 13(14), pages 1-21, July.
    7. Artur Bieniek & Jan Kuchmacz & Karol Sztekler & Lukasz Mika & Ewelina Radomska, 2021. "A New Method of Regulating the Cooling Capacity of a Cooling System with CO 2," Energies, MDPI, vol. 14(7), pages 1-18, March.
    8. Yuyao Sun & Jinfeng Wang & Jing Xie, 2021. "Performance Optimizations of the Transcritical CO 2 Two-Stage Compression Refrigeration System and Influences of the Auxiliary Gas Cooler," Energies, MDPI, vol. 14(17), pages 1-17, September.
    9. Llopis, Rodrigo & Sánchez, Daniel & Sanz-Kock, Carlos & Cabello, Ramón & Torrella, Enrique, 2015. "Energy and environmental comparison of two-stage solutions for commercial refrigeration at low temperature: Fluids and systems," Applied Energy, Elsevier, vol. 138(C), pages 133-142.
    10. Seo, Dong-yeon & Koo, Choongwan & Hong, Taehoon, 2015. "A Lagrangian finite element model for estimating the heating and cooling demand of a residential building with a different envelope design," Applied Energy, Elsevier, vol. 142(C), pages 66-79.
    11. Laura Nebot-Andrés & Daniel Calleja-Anta & Daniel Sánchez & Ramón Cabello & Rodrigo Llopis, 2019. "Thermodynamic Analysis of a CO 2 Refrigeration Cycle with Integrated Mechanical Subcooling," Energies, MDPI, vol. 13(1), pages 1-17, December.
    12. Ignacio López Paniagua & Ángel Jiménez Álvaro & Javier Rodríguez Martín & Celina González Fernández & Rafael Nieto Carlier, 2019. "Comparison of Transcritical CO 2 and Conventional Refrigerant Heat Pump Water Heaters for Domestic Applications," Energies, MDPI, vol. 12(3), pages 1-17, February.
    13. Yulong Song & Haidan Wang & Feng Cao, 2020. "Investigation of the Impact Factors on the Optimal Intermediate Temperature in a Dual Transcritical CO 2 System with a Dedicated Transcritical CO 2 Subcooler," Energies, MDPI, vol. 13(2), pages 1-23, January.
    14. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Francisco B. Lamas & Vítor A. F. Costa, 2022. "The Role of the Compressor Isentropic Efficiency in Non-Intrusive Refrigerant Side Characterization of Transcritical CO 2 Heat Pump Water Heaters," Clean Technol., MDPI, vol. 4(3), pages 1-9, August.
    16. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    17. Biagio Bianchi & Giuseppe Cavone & Gianpaolo Cice & Antonia Tamborrino & Marialuisa Amodio & Imperatrice Capotorto & Pasquale Catalano, 2015. "CO 2 Employment as Refrigerant Fluid with a Low Environmental Impact. Experimental Tests on Arugula and Design Criteria for a Test Bench," Sustainability, MDPI, vol. 7(4), pages 1-19, March.
    18. Guruchethan, A.M. & Reddy, Y. Siva Kumar & Maiya, M.P. & Hafner, Armin, 2024. "Experimental investigation of multi-ejector CO2 heat pump system with and without IHX," Energy, Elsevier, vol. 297(C).
    19. Paride Gullo, 2018. "Advanced Thermodynamic Analysis of a Transcritical R744 Booster Refrigerating Unit with Dedicated Mechanical Subcooling," Energies, MDPI, vol. 11(11), pages 1-26, November.
    20. Liu, Bo & Guo, Xiangji & Xi, Xiuzhi & Sun, Jianhua & Zhang, Bo & Yang, Zhuqiang, 2023. "Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture," Energy, Elsevier, vol. 263(PD).

    More about this item

    Keywords

    R744; CO 2 ; transcritical; subcooling; IHX; R600a; R290; R152a; R1234yf;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3204-:d:374082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.