Thermodynamic Performance Investigation of Commercial R744 Booster Refrigeration Plants Based on Advanced Exergy Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ligang Wang & Yongping Yang & Tatiana Morosuk & George Tsatsaronis, 2012. "Advanced Thermodynamic Analysis and Evaluation of a Supercritical Power Plant," Energies, MDPI, vol. 5(6), pages 1-14, June.
- Gullo, Paride & Tsamos, Konstantinos M. & Hafner, Armin & Banasiak, Krzysztof & Ge, Yunting T. & Tassou, Savvas A., 2018. "Crossing CO2 equator with the aid of multi-ejector concept: A comprehensive energy and environmental comparative study," Energy, Elsevier, vol. 164(C), pages 236-263.
- Paride Gullo, 2018. "Advanced Thermodynamic Analysis of a Transcritical R744 Booster Refrigerating Unit with Dedicated Mechanical Subcooling," Energies, MDPI, vol. 11(11), pages 1-26, November.
- Shucheng Wang & Zhongguang Fu & Gaoqiang Zhang & Tianqing Zhang, 2018. "Advanced Thermodynamic Analysis Applied to an Integrated Solar Combined Cycle System," Energies, MDPI, vol. 11(6), pages 1-16, June.
- Morosuk, T. & Tsatsaronis, G., 2009. "Advanced exergetic evaluation of refrigeration machines using different working fluids," Energy, Elsevier, vol. 34(12), pages 2248-2258.
- Gullo, Paride & Elmegaard, Brian & Cortella, Giovanni, 2016. "Advanced exergy analysis of a R744 booster refrigeration system with parallel compression," Energy, Elsevier, vol. 107(C), pages 562-571.
- Chen, Jianyong & Havtun, Hans & Palm, Björn, 2015. "Conventional and advanced exergy analysis of an ejector refrigeration system," Applied Energy, Elsevier, vol. 144(C), pages 139-151.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Benlin Shi & Muqing Chen & Weikai Chi & Qichao Yang & Guangbin Liu & Yuanyang Zhao & Liansheng Li, 2022. "Effects of Internal Heat Exchanger on Two-Stage Compression Trans-Critical CO 2 Refrigeration Cycle Combined with Expander and Intercooling," Energies, MDPI, vol. 16(1), pages 1-16, December.
- Yuyao Sun & Jinfeng Wang & Jing Xie, 2021. "Performance Optimizations of the Transcritical CO 2 Two-Stage Compression Refrigeration System and Influences of the Auxiliary Gas Cooler," Energies, MDPI, vol. 14(17), pages 1-17, September.
- Paride Gullo & Armin Hafner & Krzysztof Banasiak & Silvia Minetto & Ekaterini E. Kriezi, 2019. "Multi-Ejector Concept: A Comprehensive Review on its Latest Technological Developments," Energies, MDPI, vol. 12(3), pages 1-29, January.
- Sahar Taslimi Taleghani & Mikhail Sorin & Sébastien Poncet, 2019. "Analysis and Optimization of Exergy Flows inside a Transcritical CO 2 Ejector for Refrigeration, Air Conditioning and Heat Pump Cycles," Energies, MDPI, vol. 12(9), pages 1-15, May.
- Liu, Shengchun & Lu, Fenping & Dai, Baomin & Nian, Victor & Li, Hailong & Qi, Haifeng & Li, Jiayu, 2019. "Performance analysis of two-stage compression transcritical CO2 refrigeration system with R290 mechanical subcooling unit," Energy, Elsevier, vol. 189(C).
- Artur Bieniek & Jan Kuchmacz & Karol Sztekler & Lukasz Mika & Ewelina Radomska, 2021. "A New Method of Regulating the Cooling Capacity of a Cooling System with CO 2," Energies, MDPI, vol. 14(7), pages 1-18, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Paride Gullo, 2018. "Advanced Thermodynamic Analysis of a Transcritical R744 Booster Refrigerating Unit with Dedicated Mechanical Subcooling," Energies, MDPI, vol. 11(11), pages 1-26, November.
- Gullo, Paride & Elmegaard, Brian & Cortella, Giovanni, 2016. "Advanced exergy analysis of a R744 booster refrigeration system with parallel compression," Energy, Elsevier, vol. 107(C), pages 562-571.
- Zhao, Hongxia & Yuan, Tianpeng & Gao, Jia & Wang, Xinli & Yan, Jia, 2019. "Conventional and advanced exergy analysis of parallel and series compression-ejection hybrid refrigeration system for a household refrigerator with R290," Energy, Elsevier, vol. 166(C), pages 845-861.
- Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Advanced exergy analysis of an oil shale retorting process," Applied Energy, Elsevier, vol. 165(C), pages 405-415.
- Bai, Tao & Yu, Jianlin & Yan, Gang, 2016. "Advanced exergy analysis on a modified auto-cascade freezer cycle with an ejector," Energy, Elsevier, vol. 113(C), pages 385-398.
- Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
- Ustaoglu, Abid, 2020. "Parametric study of absorption refrigeration with vapor compression refrigeration cycle using wet, isentropic and azeotropic working fluids: Conventional and advanced exergy approach," Energy, Elsevier, vol. 201(C).
- Fallah, M. & Mohammadi, Z. & Mahmoudi, S.M. Seyed, 2022. "Advanced exergy analysis of the combined S–CO2/ORC system," Energy, Elsevier, vol. 241(C).
- Ali Khalid Shaker Al-Sayyab & Joaquín Navarro-Esbrí & Victor Manuel Soto-Francés & Adrián Mota-Babiloni, 2021. "Conventional and Advanced Exergoeconomic Analysis of a Compound Ejector-Heat Pump for Simultaneous Cooling and Heating," Energies, MDPI, vol. 14(12), pages 1-27, June.
- Keçebaş, Ali & Gökgedik, Harun, 2015. "Thermodynamic evaluation of a geothermal power plant for advanced exergy analysis," Energy, Elsevier, vol. 88(C), pages 746-755.
- Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process," Energy, Elsevier, vol. 109(C), pages 62-76.
- Fang, Zhongcheng & Fan, Chaochao & Yan, Gang & Yu, Jianlin, 2019. "Performance evaluation of a modified refrigeration cycle with parallel compression for refrigerator-freezer applications," Energy, Elsevier, vol. 188(C).
- Yang, Yongping & Wang, Ligang & Dong, Changqing & Xu, Gang & Morosuk, Tatiana & Tsatsaronis, George, 2013. "Comprehensive exergy-based evaluation and parametric study of a coal-fired ultra-supercritical power plant," Applied Energy, Elsevier, vol. 112(C), pages 1087-1099.
- Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
- Khoshgoftar Manesh, M.H. & Navid, P. & Blanco Marigorta, A.M. & Amidpour, M. & Hamedi, M.H., 2013. "New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses," Energy, Elsevier, vol. 59(C), pages 314-333.
- He, Qing & Liu, Hui & Hao, Yinping & Liu, Yaning & Liu, Wenyi, 2018. "Thermodynamic analysis of a novel supercritical compressed carbon dioxide energy storage system through advanced exergy analysis," Renewable Energy, Elsevier, vol. 127(C), pages 835-849.
- Asgari, Sahar & Noorpoor, A.R. & Boyaghchi, Fateme Ahmadi, 2017. "Parametric assessment and multi-objective optimization of an internal auto-cascade refrigeration cycle based on advanced exergy and exergoeconomic concepts," Energy, Elsevier, vol. 125(C), pages 576-590.
- Paride Gullo & Armin Hafner & Krzysztof Banasiak & Silvia Minetto & Ekaterini E. Kriezi, 2019. "Multi-Ejector Concept: A Comprehensive Review on its Latest Technological Developments," Energies, MDPI, vol. 12(3), pages 1-29, January.
- Soltani, S. & Yari, M. & Mahmoudi, S.M.S. & Morosuk, T. & Rosen, M.A., 2013. "Advanced exergy analysis applied to an externally-fired combined-cycle power plant integrated with a biomass gasification unit," Energy, Elsevier, vol. 59(C), pages 775-780.
- Liu, Shengchun & Lu, Fenping & Dai, Baomin & Nian, Victor & Li, Hailong & Qi, Haifeng & Li, Jiayu, 2019. "Performance analysis of two-stage compression transcritical CO2 refrigeration system with R290 mechanical subcooling unit," Energy, Elsevier, vol. 189(C).
More about this item
Keywords
advanced exergetic analysis; CO 2 ; exergy destruction; multi-ejector; supermarket; transcritical refrigeration system;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:354-:d:200197. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.