IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224011010.html
   My bibliography  Save this article

Experimental investigation of multi-ejector CO2 heat pump system with and without IHX

Author

Listed:
  • Guruchethan, A.M.
  • Reddy, Y. Siva Kumar
  • Maiya, M.P.
  • Hafner, Armin

Abstract

Environmental degradation due to the use of synthetic refrigerants should motivate end users to request natural refrigerants to secure their businesses from unforeseen negative ecological impacts. Further, using natural refrigerants as working fluids for HVAC requirements helps achieve zero CO2 emissions from this sector. The CO2 heat pumps are energy efficient units providing simultaneous heating and cooling. Implementing performance enhancing components like ejectors and/or internal heat exchangers (IHX) is sometimes beneficial. This study experimentally evaluates the ejector performance in a multi-ejector CO2 system of 33 kW cooling capacity, with and without an IHX, at different gas cooler exit temperatures. Evaporator and gas cooler exit temperatures are varied from 4 to 10 °C and 34 to 46 °C, respectively. These temperature ranges suit the simultaneous cooling (AC) and heating demands in various buildings and food- and beverage industries. At the gas cooler exit temperature of 42 °C, the system COP is improved by 12 % with an IHX, whereas the ejector efficiency increased from 14 to 18 % without the IHX. The ejector efficiency and entrainment ratio also increased at elevated heat rejection temperatures. However, as expected, the system COP decreased. Therefore, the heating system must be adapted to avoid high gas cooler exit temperatures.

Suggested Citation

  • Guruchethan, A.M. & Reddy, Y. Siva Kumar & Maiya, M.P. & Hafner, Armin, 2024. "Experimental investigation of multi-ejector CO2 heat pump system with and without IHX," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224011010
    DOI: 10.1016/j.energy.2024.131328
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224011010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131328?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gullo, Paride & Tsamos, Konstantinos M. & Hafner, Armin & Banasiak, Krzysztof & Ge, Yunting T. & Tassou, Savvas A., 2018. "Crossing CO2 equator with the aid of multi-ejector concept: A comprehensive energy and environmental comparative study," Energy, Elsevier, vol. 164(C), pages 236-263.
    2. Jia, Fan & Yin, Xiang & Cao, Feng & Fang, Jianmin & Wang, Anci & Wang, Xixi & Yang, Lichen, 2024. "A novel control method for the automotive CO2 heat pumps under inappropriate refrigerant charge conditions," Energy, Elsevier, vol. 286(C).
    3. Zendehboudi, Alireza, 2024. "Energy, exergy, and exergoeconomic analyses of an air source transcritical CO2 heat pump for simultaneous domestic hot water and space heating," Energy, Elsevier, vol. 290(C).
    4. Dai, Baomin & Liu, Shengchun & Li, Hailong & Sun, Zhili & Song, Mengjie & Yang, Qianru & Ma, Yitai, 2018. "Energetic performance of transcritical CO2 refrigeration cycles with mechanical subcooling using zeotropic mixture as refrigerant," Energy, Elsevier, vol. 150(C), pages 205-221.
    5. Sarkar, Jahar, 2008. "Optimization of ejector-expansion transcritical CO2 heat pump cycle," Energy, Elsevier, vol. 33(9), pages 1399-1406.
    6. Xu, Xiao Xiao & Chen, Guang Ming & Tang, Li Ming & Zhu, Zhi Jiang, 2012. "Experimental investigation on performance of transcritical CO2 heat pump system with ejector under optimum high-side pressure," Energy, Elsevier, vol. 44(1), pages 870-877.
    7. Liu, Xuetao & Hu, Yusheng & Wang, Qifan & Yao, Liang & Li, Minxia, 2021. "Energetic, environmental and economic comparative analyses of modified transcritical CO2 heat pump system to replace R134a system for home heating," Energy, Elsevier, vol. 229(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xiao Xiao & Liu, Chao & Fu, Xiang & Gao, Hong & Li, Yourong, 2015. "Energy and exergy analyses of a modified combined cooling, heating, and power system using supercritical CO2," Energy, Elsevier, vol. 86(C), pages 414-422.
    2. Artur Bieniek & Jan Kuchmacz & Karol Sztekler & Lukasz Mika & Ewelina Radomska, 2021. "A New Method of Regulating the Cooling Capacity of a Cooling System with CO 2," Energies, MDPI, vol. 14(7), pages 1-18, March.
    3. Sarkar, Jahar, 2012. "Ejector enhanced vapor compression refrigeration and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6647-6659.
    4. Wang, Xiao & Yu, Jianlin & Zhou, Mengliu & Lv, Xiaolong, 2014. "Comparative studies of ejector-expansion vapor compression refrigeration cycles for applications in domestic refrigerator-freezers," Energy, Elsevier, vol. 70(C), pages 635-642.
    5. Haida, Michal & Smolka, Jacek & Hafner, Armin & Ostrowski, Ziemowit & Palacz, Michał & Madsen, Kenneth B. & Försterling, Sven & Nowak, Andrzej J. & Banasiak, Krzysztof, 2018. "Performance mapping of the R744 ejectors for refrigeration and air conditioning supermarket application: A hybrid reduced-order model," Energy, Elsevier, vol. 153(C), pages 933-948.
    6. Liu, Shengchun & Lu, Fenping & Dai, Baomin & Nian, Victor & Li, Hailong & Qi, Haifeng & Li, Jiayu, 2019. "Performance analysis of two-stage compression transcritical CO2 refrigeration system with R290 mechanical subcooling unit," Energy, Elsevier, vol. 189(C).
    7. Mastrowski, Mikolaj & Smolka, Jacek & Hafner, Armin & Haida, Michal & Palacz, Michal & Banasiak, Krzysztof, 2019. "Experimental study of the heat transfer problem in expansion devices in CO2 refrigeration systems," Energy, Elsevier, vol. 173(C), pages 586-597.
    8. Li, Jiaojiao & Zoghi, Mohammad & Zhao, Linfeng, 2022. "Thermo-economic assessment and optimization of a geothermal-driven tri-generation system for power, cooling, and hydrogen production," Energy, Elsevier, vol. 244(PB).
    9. Yari, Mortaza & Mahmoudi, S.M.S., 2011. "Thermodynamic analysis and optimization of novel ejector-expansion TRCC (transcritical CO2) cascade refrigeration cycles (Novel transcritical CO2 cycle)," Energy, Elsevier, vol. 36(12), pages 6839-6850.
    10. Bodys, Jakub & Smolka, Jacek & Palacz, Michal & Haida, Michal & Banasiak, Krzysztof & Nowak, Andrzej J. & Hafner, Armin, 2016. "Performance of fixed geometry ejectors with a swirl motion installed in a multi-ejector module of a CO2 refrigeration system," Energy, Elsevier, vol. 117(P2), pages 620-631.
    11. Ángel Á. Pardiñas & Michael Jokiel & Christian Schlemminger & Håkon Selvnes & Armin Hafner, 2021. "Modeling of a CO 2 -Based Integrated Refrigeration System for Supermarkets," Energies, MDPI, vol. 14(21), pages 1-21, October.
    12. Daniel Sánchez & Jesús Catalán-Gil & Ramón Cabello & Daniel Calleja-Anta & Rodrigo Llopis & Laura Nebot-Andrés, 2020. "Experimental Analysis and Optimization of an R744 Transcritical Cycle Working with a Mechanical Subcooling System," Energies, MDPI, vol. 13(12), pages 1-27, June.
    13. Laura Nebot-Andrés & Daniel Calleja-Anta & Daniel Sánchez & Ramón Cabello & Rodrigo Llopis, 2019. "Thermodynamic Analysis of a CO 2 Refrigeration Cycle with Integrated Mechanical Subcooling," Energies, MDPI, vol. 13(1), pages 1-17, December.
    14. Li, Huashan & Cao, Fei & Bu, Xianbiao & Wang, Lingbao & Wang, Xianlong, 2014. "Performance characteristics of R1234yf ejector-expansion refrigeration cycle," Applied Energy, Elsevier, vol. 121(C), pages 96-103.
    15. Sahar Taslimi Taleghani & Mikhail Sorin & Sébastien Poncet, 2019. "Analysis and Optimization of Exergy Flows inside a Transcritical CO 2 Ejector for Refrigeration, Air Conditioning and Heat Pump Cycles," Energies, MDPI, vol. 12(9), pages 1-15, May.
    16. Austin, Brian T. & Sumathy, K., 2011. "Transcritical carbon dioxide heat pump systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4013-4029.
    17. Youcef Redjeb & Khatima Kaabeche-Djerafi & Anna Stoppato & Alberto Benato, 2021. "The IRC-PD Tool: A Code to Design Steam and Organic Waste Heat Recovery Units," Energies, MDPI, vol. 14(18), pages 1-37, September.
    18. Xu, Xiao Xiao & Chen, Guang Ming & Tang, Li Ming & Zhu, Zhi Jiang, 2012. "Experimental investigation on performance of transcritical CO2 heat pump system with ejector under optimum high-side pressure," Energy, Elsevier, vol. 44(1), pages 870-877.
    19. Ko, Jaedeok & Jeong, Ji Hwan, 2024. "Status and challenges of vapor compression air conditioning and heat pump systems for electric vehicles," Applied Energy, Elsevier, vol. 375(C).
    20. Aprea, Ciro & Maiorino, Angelo, 2009. "Heat rejection pressure optimization for a carbon dioxide split system: An experimental study," Applied Energy, Elsevier, vol. 86(11), pages 2373-2380, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224011010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.