IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v161y2018icp81-89.html
   My bibliography  Save this article

Evaluation on distributed renewable energy system integrated with a Passive House building using a new energy performance index

Author

Listed:
  • Wang, Yang
  • Kuckelkorn, Jens
  • Li, Daoliang
  • Du, Jiangtao

Abstract

The newly built Passive House school buildings have broadly employed a novel distributed renewable energy system for heating energy supply in Germany. This article proposed a distributed renewable energy system and investigated its performances (energy and thermal comfort) through numerical simulations in a school building. A new energy performance index has therefore been defined to evaluate this renewable energy system in the school. The energy system simulation (ESS) methodology and numerical models were validated by typical on-site measurements, including borehole outlet temperature and COP of heat pump. In addition, more numerical simulations relevant to energy performance of the proposed renewable energy system have been conducted based on the effects of the borehole outlet temperature and heat recovery efficiency. Several important findings can be achieved as follows. 1) Increasing the heat recovery efficiency of water-water heat exchanger facility would not only significantly improve COP, but also reduce obviously electricity use and energy costs. 2) A comparison, between the systems with heat recovery efficiency of 0.9 and without heat recovery, demonstrated the reduction of CO2 emissions up to 5.3 kg per typical winter day in Germany. 3) There is a significant correlation between the heat pump COP and the heat recovery efficiency. 4) In addition, most environmental measurements in the reference rooms in the school building fall in the comfort zone in winter, which indicates the heating energy supply based on this distributed renewable energy system could support a proper level of thermal comfort.

Suggested Citation

  • Wang, Yang & Kuckelkorn, Jens & Li, Daoliang & Du, Jiangtao, 2018. "Evaluation on distributed renewable energy system integrated with a Passive House building using a new energy performance index," Energy, Elsevier, vol. 161(C), pages 81-89.
  • Handle: RePEc:eee:energy:v:161:y:2018:i:c:p:81-89
    DOI: 10.1016/j.energy.2018.07.140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218314373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abu Bakar, Nur Najihah & Hassan, Mohammad Yusri & Abdullah, Hayati & Rahman, Hasimah Abdul & Abdullah, Md Pauzi & Hussin, Faridah & Bandi, Masilah, 2015. "Energy efficiency index as an indicator for measuring building energy performance: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 1-11.
    2. Wang, Yang & Kuckelkorn, Jens & Zhao, Fu-Yun & Spliethoff, Hartmut & Lang, Werner, 2017. "A state of art of review on interactions between energy performance and indoor environment quality in Passive House buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1303-1319.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khayyam, Hamid & Naebe, Minoo & Milani, Abbas S. & Fakhrhoseini, Seyed Mousa & Date, Abhijit & Shabani, Bahman & Atkiss, Steve & Ramakrishna, Seeram & Fox, Bronwyn & Jazar, Reza N., 2021. "Improving energy efficiency of carbon fiber manufacturing through waste heat recovery: A circular economy approach with machine learning," Energy, Elsevier, vol. 225(C).
    2. Yutong Zhao & Shuang Zeng & Yifeng Ding & Lin Ma & Zhao Wang & Anqi Liang & Hongbo Ren, 2024. "Cost–Benefit Analysis of Distributed Energy Systems Considering the Monetization of Indirect Benefits," Sustainability, MDPI, vol. 16(2), pages 1-14, January.
    3. Wang, Zhenfeng & Xu, Guangyin & Wang, Heng & Ren, Jingzheng, 2019. "Distributed energy system for sustainability transition: A comprehensive assessment under uncertainties based on interval multi-criteria decision making method by coupling interval DEMATEL and interva," Energy, Elsevier, vol. 169(C), pages 750-761.
    4. Jianan Liu & Hao Yu & Haoran Ji & Kunpeng Zhao & Chaoxian Lv & Peng Li, 2020. "Optimal Operation Strategy of a Community Integrated Energy System Constrained by the Seasonal Balance of Ground Source Heat Pumps," Sustainability, MDPI, vol. 12(11), pages 1-24, June.
    5. Cailou, Jiang & DeHai, Liu, 2022. "Does venture capital stimulate the innovation of China's new energy enterprises?," Energy, Elsevier, vol. 244(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    2. Tullio de Rubeis & Annamaria Ciccozzi & Letizia Giusti & Dario Ambrosini, 2022. "The 3D Printing Potential for Heat Flow Optimization: Influence of Block Geometries on Heat Transfer Processes," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    3. Rosaura Castrillón Mendoza & Javier M. Rey Hernández & Eloy Velasco Gómez & Julio F. San José Alonso & Francisco J. Rey Martínez, 2018. "Analysis of the Methodology to Obtain Several Key Indicators Performance (KIP), by Energy Retrofitting of the Actual Building to the District Heating Fuelled by Biomass, Focusing on nZEB Goal: Case of," Energies, MDPI, vol. 12(1), pages 1-20, December.
    4. Zhao, Lu-Tao & Liu, Zhao-Ting & Cheng, Lei, 2021. "How will China's coal industry develop in the future? A quantitative analysis with policy implications," Energy, Elsevier, vol. 235(C).
    5. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    6. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    7. Yinan Li & Neng Zhu & Beibei Qin, 2019. "Target Setting Outlook for New Residential Building Energy Efficiency Promotion in China: A Frontline Perspective Using Delphi," Energies, MDPI, vol. 12(9), pages 1-29, April.
    8. Wang, Xia & Ding, Chao & Zhou, Mao & Cai, Weiguang & Ma, Xianrui & Yuan, Jiachen, 2023. "Assessment of space heating consumption efficiency based on a household survey in the hot summer and cold winter climate zone in China," Energy, Elsevier, vol. 274(C).
    9. Balali, Amirhossein & Yunusa-Kaltungo, Akilu & Edwards, Rodger, 2023. "A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    10. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Xie, Lei & Wang, Xiliang & Wu, Jing, 2018. "Experimental study and performance evaluation of a PV-blind embedded double skin façade in winter season," Energy, Elsevier, vol. 165(PB), pages 326-342.
    11. Rohács, Dániel, 2023. "Analysis and optimization of potential energy sources for residential building application," Energy, Elsevier, vol. 275(C).
    12. Zhixing Li & Mimi Tian & Xiaoqing Zhu & Shujing Xie & Xin He, 2022. "A Review of Integrated Design Process for Building Climate Responsiveness," Energies, MDPI, vol. 15(19), pages 1-35, September.
    13. Alkistis E. Kanteraki & Grigorios L. Kyriakopoulos & Miltiadis Zamparas & Vasilis C. Kapsalis & Sofoklis S. Makridis & Giouli Mihalakakou, 2020. "Investigating Thermal Performance of Residential Buildings in Marmari Region, South Evia, Greece," Challenges, MDPI, vol. 11(1), pages 1-22, February.
    14. Schieweck, Alexandra & Uhde, Erik & Salthammer, Tunga & Salthammer, Lea C. & Morawska, Lidia & Mazaheri, Mandana & Kumar, Prashant, 2018. "Smart homes and the control of indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 705-718.
    15. Piscitelli, Marco Savino & Giudice, Rocco & Capozzoli, Alfonso, 2024. "A holistic time series-based energy benchmarking framework for applications in large stocks of buildings," Applied Energy, Elsevier, vol. 357(C).
    16. Martínez-de-Alegría, Itziar & Río, Rosa-María & Zarrabeitia, Enara & Álvarez, Izaskun, 2021. "Heating demand as an energy performance indicator: A case study of buildings built under the passive house standard in Spain," Energy Policy, Elsevier, vol. 159(C).
    17. Cynthia Changxin Wang & Samad M.E. Sepasgozar & Mudan Wang & Jun Sun & Xin Ning, 2019. "Green Performance Evaluation System for Energy-Efficiency-Based Planning for Construction Site Layout," Energies, MDPI, vol. 12(24), pages 1-21, December.
    18. Kotarela, Faidra & Kyritsis, Anastasios & Agathokleous, Rafaela & Papanikolaou, Nick, 2023. "On the exploitation of dynamic simulations for the design of buildings energy systems," Energy, Elsevier, vol. 271(C).
    19. Maria Rosaria Guarini & Pierluigi Morano & Francesco Sica, 2019. "Integrated Ecosystem Design: An Evaluation Model to Support the Choice of Eco-Compatible Technological Solutions for Residential Building," Energies, MDPI, vol. 12(14), pages 1-34, July.
    20. Nur Najihah Abu Bakar & Josep M. Guerrero & Juan C. Vasquez & Najmeh Bazmohammadi & Yun Yu & Abdullah Abusorrah & Yusuf A. Al-Turki, 2021. "A Review of the Conceptualization and Operational Management of Seaport Microgrids on the Shore and Seaside," Energies, MDPI, vol. 14(23), pages 1-31, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:161:y:2018:i:c:p:81-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.