IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p93-d193734.html
   My bibliography  Save this article

Analysis of the Methodology to Obtain Several Key Indicators Performance (KIP), by Energy Retrofitting of the Actual Building to the District Heating Fuelled by Biomass, Focusing on nZEB Goal: Case of Study

Author

Listed:
  • Rosaura Castrillón Mendoza

    (Department of Energy and Mechanics, University Autónoma de Occidente Cali (UAO), Cali 760030, Colombia
    Department of Energy and Fluid Mechanics, School of Engineering (EII), University of Valladolid (UVa), 47002 Valladolid, Spain)

  • Javier M. Rey Hernández

    (Department of Energy and Fluid Mechanics, School of Engineering (EII), University of Valladolid (UVa), 47002 Valladolid, Spain
    Higher Polytechnic College, European University Miguel de Cervantes (UEMC), 47012 Valladolid, Spain)

  • Eloy Velasco Gómez

    (Department of Energy and Fluid Mechanics, School of Engineering (EII), University of Valladolid (UVa), 47002 Valladolid, Spain)

  • Julio F. San José Alonso

    (Department of Energy and Fluid Mechanics, School of Engineering (EII), University of Valladolid (UVa), 47002 Valladolid, Spain)

  • Francisco J. Rey Martínez

    (Department of Energy and Fluid Mechanics, School of Engineering (EII), University of Valladolid (UVa), 47002 Valladolid, Spain)

Abstract

In order to achieve the objectives of the European 20/20/20 strategy, and to obtain a greater energy efficiency, integration of renewable energies and the reduction of carbon emissions, a District Heating (DH) system has been designed by the University of Valladolid (UVa), Spain, one of the most important DH fed by biomass fuel in Spain, supplying heating and domestic hot water (DHW) to 31 buildings in Valladolid, the majority of them, educational buildings on the University Campus. The aims of this paper were to study the change from an energy system fueled by natural gas to District Heating by biomass in a building on the campus of the University of Valladolid—the School of Engineering (EII)—studying its consumption from its connection to the District Heating system. An energy management methodology such as ISO 50001 is carried out, applied to efficiency systems in buildings, thus establishing new criteria of sustainability and economic value. In this paper, energy management will also be analyzed in accordance with the proposed tools of an Energy Management System (EMS) applied to the EII building, through the measurement of energy parameters, calculation of thermal consumption, thermal energy savings as a result of the change from system to District Heating by biomass, economic savings, reduction of environmental impact and indicators of thermal efficiency I 100 and CUSUM indicator. Finally, the primary renewable and non-renewable energy efficiency indicators for the new District Heating system will be determined. The concept of the near Zero Energy Buildings is defined in the European Union (EU) in order to analyze an approach to an nZEB which results from replacing the natural gas heating system by a biomass District Heating system.

Suggested Citation

  • Rosaura Castrillón Mendoza & Javier M. Rey Hernández & Eloy Velasco Gómez & Julio F. San José Alonso & Francisco J. Rey Martínez, 2018. "Analysis of the Methodology to Obtain Several Key Indicators Performance (KIP), by Energy Retrofitting of the Actual Building to the District Heating Fuelled by Biomass, Focusing on nZEB Goal: Case of," Energies, MDPI, vol. 12(1), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:93-:d:193734
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/93/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/93/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Javier M. Rey-Hernández & Eloy Velasco-Gómez & Julio F. San José-Alonso & Ana Tejero-González & Francisco J. Rey-Martínez, 2018. "Energy Analysis at a Near Zero Energy Building. A Case-Study in Spain," Energies, MDPI, vol. 11(4), pages 1-19, April.
    2. Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2018. "A state of art review on the district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 420-439.
    3. Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
    4. Nielsen, Steffen & Möller, Bernd, 2012. "Excess heat production of future net zero energy buildings within district heating areas in Denmark," Energy, Elsevier, vol. 48(1), pages 23-31.
    5. Abu Bakar, Nur Najihah & Hassan, Mohammad Yusri & Abdullah, Hayati & Rahman, Hasimah Abdul & Abdullah, Md Pauzi & Hussin, Faridah & Bandi, Masilah, 2015. "Energy efficiency index as an indicator for measuring building energy performance: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 1-11.
    6. Lygnerud, Kristina & Werner, Sven, 2018. "Risk assessment of industrial excess heat recovery in district heating systems," Energy, Elsevier, vol. 151(C), pages 430-441.
    7. Lidberg, T. & Gustafsson, M. & Myhren, J.A. & Olofsson, T. & Ödlund (former Trygg), L., 2018. "Environmental impact of energy refurbishment of buildings within different district heating systems," Applied Energy, Elsevier, vol. 227(C), pages 231-238.
    8. Werner, Sven, 2017. "District heating and cooling in Sweden," Energy, Elsevier, vol. 126(C), pages 419-429.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Ferrari & Federico Ioverno & Marco Sozzi & Francesco Marinello & Andrea Pezzuolo, 2021. "Land-Use Change and Bioenergy Production: Soil Consumption and Characterization of Anaerobic Digestion Plants," Energies, MDPI, vol. 14(13), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Khosravi, Fatemeh & Lowes, Richard & Ugalde-Loo, Carlos E., 2023. "Cooling is hotting up in the UK," Energy Policy, Elsevier, vol. 174(C).
    3. Billerbeck, Anna & Breitschopf, Barbara & Winkler, Jenny & Bürger, Veit & Köhler, Benjamin & Bacquet, Alexandre & Popovski, Eftim & Fallahnejad, Mostafa & Kranzl, Lukas & Ragwitz, Mario, 2023. "Policy frameworks for district heating: A comprehensive overview and analysis of regulations and support measures across Europe," Energy Policy, Elsevier, vol. 173(C).
    4. Krzysztof Wąs & Jan Radoń & Agnieszka Sadłowska-Sałęga, 2020. "Maintenance of Passive House Standard in the Light of Long-Term Study on Energy Use in a Prefabricated Lightweight Passive House in Central Europe," Energies, MDPI, vol. 13(11), pages 1-22, June.
    5. Dorotić, Hrvoje & Ban, Marko & Pukšec, Tomislav & Duić, Neven, 2020. "Impact of wind penetration in electricity markets on optimal power-to-heat capacities in a local district heating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    6. Alexander Hedlund & Olof Björkqvist & Anders Nilsson & Per Engstrand, 2022. "Energy Optimization in a Paper Mill Enabled by a Three-Site Energy Cooperation," Energies, MDPI, vol. 15(8), pages 1-12, April.
    7. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Averfalk, Helge & Werner, Sven, 2020. "Economic benefits of fourth generation district heating," Energy, Elsevier, vol. 193(C).
    9. Mc Guire, Jason & Petrović, Stefan N. & Daly, Hannah & Rogan, Fionn & Smith, Andrew & Balyk, Olexandr, 2024. "Is District Heating a cost-effective solution to decarbonise Irish buildings?," Energy, Elsevier, vol. 296(C).
    10. Pipiciello, Mauro & Caldera, Matteo & Cozzini, Marco & Ancona, Maria A. & Melino, Francesco & Di Pietra, Biagio, 2021. "Experimental characterization of a prototype of bidirectional substation for district heating with thermal prosumers," Energy, Elsevier, vol. 223(C).
    11. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    12. Aoun, Nadine & Bavière, Roland & Vallée, Mathieu & Aurousseau, Antoine & Sandou, Guillaume, 2019. "Modelling and flexible predictive control of buildings space-heating demand in district heating systems," Energy, Elsevier, vol. 188(C).
    13. Abugabbara, Marwan & Javed, Saqib & Johansson, Dennis, 2022. "A simulation model for the design and analysis of district systems with simultaneous heating and cooling demands," Energy, Elsevier, vol. 261(PA).
    14. Kontu, K. & Rinne, S. & Junnila, S., 2019. "Introducing modern heat pumps to existing district heating systems – Global lessons from viable decarbonizing of district heating in Finland," Energy, Elsevier, vol. 166(C), pages 862-870.
    15. Atefeh Abbaspour & Hossein Yousefi & Alireza Aslani & Younes Noorollahi, 2022. "Economic and Environmental Analysis of Incorporating Geothermal District Heating System Combined with Radiant Floor Heating for Building Heat Supply in Sarein, Iran Using Building Information Modeling," Energies, MDPI, vol. 15(23), pages 1-24, November.
    16. Milad Khosravi & Ahmad Arabkoohsar, 2019. "Thermal-Hydraulic Performance Analysis of Twin-Pipes for Various Future District Heating Schemes," Energies, MDPI, vol. 12(7), pages 1-17, April.
    17. Beatriz María Paredes-Sánchez & José Pablo Paredes & Natalia Caparrini & Elena Rivo-López, 2021. "Analysis of District Heating and Cooling Energy Systems in Spain: Resources, Technology and Management," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    18. Steinegger, Josef & Wallner, Stefan & Greiml, Matthias & Kienberger, Thomas, 2023. "A new quasi-dynamic load flow calculation for district heating networks," Energy, Elsevier, vol. 266(C).
    19. Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
    20. Jodeiri, A.M. & Goldsworthy, M.J. & Buffa, S. & Cozzini, M., 2022. "Role of sustainable heat sources in transition towards fourth generation district heating – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:93-:d:193734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.