IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p3006-d1417312.html
   My bibliography  Save this article

Linked Data Generation Methodology and the Geospatial Cross-Sectional Buildings Energy Benchmarking Use Case

Author

Listed:
  • Edgar A. Martínez-Sarmiento

    (CIMNE—Centre Internacional de Metodes Numerics en Enginyeria, Edifici C1 Campus Nord UPC C/Gran Capità, S/N, Les Corts, 08034 Barcelona, Spain
    Computer Engineering and Digital Design, Polytechnic School, Campus of Cappont, UDL—Universitat de Lleida, C. de Jaume II, 69, 25001 Lleida, Spain)

  • Jose Manuel Broto

    (CIMNE—Centre Internacional de Metodes Numerics en Enginyeria, Edifici C1 Campus Nord UPC C/Gran Capità, S/N, Les Corts, 08034 Barcelona, Spain)

  • Eloi Gabaldon

    (CIMNE—Centre Internacional de Metodes Numerics en Enginyeria, Edifici C1 Campus Nord UPC C/Gran Capità, S/N, Les Corts, 08034 Barcelona, Spain)

  • Jordi Cipriano

    (CIMNE—Centre Internacional de Metodes Numerics en Enginyeria, Edifici C1 Campus Nord UPC C/Gran Capità, S/N, Les Corts, 08034 Barcelona, Spain)

  • Roberto García

    (Computer Engineering and Digital Design, Polytechnic School, Campus of Cappont, UDL—Universitat de Lleida, C. de Jaume II, 69, 25001 Lleida, Spain)

  • Stoyan Danov

    (CIMNE—Centre Internacional de Metodes Numerics en Enginyeria, Edifici C1 Campus Nord UPC C/Gran Capità, S/N, Les Corts, 08034 Barcelona, Spain)

Abstract

Cross-sectional energy benchmarking in the building domain has become crucial for policymakers, energy managers and property owners as they can compare an immovable property performance against its closest peers. For this, Key Performance Indicators (KPIs) are formulated, often relying on multiple and heterogeneous data sources which, combined, can be used to set benchmarks following normalization criteria. Geographically delimited parameters are important among these criteria because they enclose entities sharing key common characteristics the geometrical boundaries represent. Linking georeferenced heterogeneous data is not trivial, for it requires geographical aggregation, which is often taken for granted or hidden within a pre-processing activity in most energy benchmarking studies. In this article, a novel approach for Linked Data (LD) generation is presented as a methodological solution for data integration together with its application in the energy benchmarking use case. The methodology consists of eight phases that follow the best principles and recommend standards including the well-known GeoSPARQL Open Geospatial Consortium (OGC) for leveraging the geographical aggregation. Its feasibility is demonstrated by the integrated exploitation of INSPIRE-formatted cadastral data and the Buildings Performance Certifications (BPCs) available for the Catalonia region in Spain. The outcomes of this research support the adoption of the proposed methodology and provide the means for generating cross-sectional building energy benchmarking histograms from any-scale geographical aggregations on the fly.

Suggested Citation

  • Edgar A. Martínez-Sarmiento & Jose Manuel Broto & Eloi Gabaldon & Jordi Cipriano & Roberto García & Stoyan Danov, 2024. "Linked Data Generation Methodology and the Geospatial Cross-Sectional Buildings Energy Benchmarking Use Case," Energies, MDPI, vol. 17(12), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:3006-:d:1417312
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/3006/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/3006/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arjunan, Pandarasamy & Poolla, Kameshwar & Miller, Clayton, 2020. "EnergyStar++: Towards more accurate and explanatory building energy benchmarking," Applied Energy, Elsevier, vol. 276(C).
    2. Abu Bakar, Nur Najihah & Hassan, Mohammad Yusri & Abdullah, Hayati & Rahman, Hasimah Abdul & Abdullah, Md Pauzi & Hussin, Faridah & Bandi, Masilah, 2015. "Energy efficiency index as an indicator for measuring building energy performance: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 1-11.
    3. Chung, William, 2011. "Review of building energy-use performance benchmarking methodologies," Applied Energy, Elsevier, vol. 88(5), pages 1470-1479, May.
    4. Mathew, Paul A. & Dunn, Laurel N. & Sohn, Michael D. & Mercado, Andrea & Custudio, Claudine & Walter, Travis, 2015. "Big-data for building energy performance: Lessons from assembling a very large national database of building energy use," Applied Energy, Elsevier, vol. 140(C), pages 85-93.
    5. Ali, Usman & Shamsi, Mohammad Haris & Bohacek, Mark & Purcell, Karl & Hoare, Cathal & Mangina, Eleni & O’Donnell, James, 2020. "A data-driven approach for multi-scale GIS-based building energy modeling for analysis, planning and support decision making," Applied Energy, Elsevier, vol. 279(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Vaisi, Salah & Varmazyari, Pouya & Esfandiari, Masoud & Sharbaf, Sara A., 2023. "Developing a multi-level energy benchmarking and certification system for office buildings in a cold climate region," Applied Energy, Elsevier, vol. 336(C).
    3. Jaqueline Litardo & Ruben Hidalgo-Leon & Guillermo Soriano, 2021. "Energy Performance and Benchmarking for University Classrooms in Hot and Humid Climates," Energies, MDPI, vol. 14(21), pages 1-17, October.
    4. Piscitelli, Marco Savino & Giudice, Rocco & Capozzoli, Alfonso, 2024. "A holistic time series-based energy benchmarking framework for applications in large stocks of buildings," Applied Energy, Elsevier, vol. 357(C).
    5. Li, Tian & Bie, Haipei & Lu, Yi & Sawyer, Azadeh Omidfar & Loftness, Vivian, 2024. "MEBA: AI-powered precise building monthly energy benchmarking approach," Applied Energy, Elsevier, vol. 359(C).
    6. Hong, Tianzhen & Piette, Mary Ann & Chen, Yixing & Lee, Sang Hoon & Taylor-Lange, Sarah C. & Zhang, Rongpeng & Sun, Kaiyu & Price, Phillip, 2015. "Commercial Building Energy Saver: An energy retrofit analysis toolkit," Applied Energy, Elsevier, vol. 159(C), pages 298-309.
    7. Hye Gi Kim & Sun Sook Kim, 2020. "Development of Energy Benchmarks for Office Buildings Using the National Energy Consumption Database," Energies, MDPI, vol. 13(4), pages 1-18, February.
    8. Andrews, Abigail & Jain, Rishee K., 2022. "Beyond Energy Efficiency: A clustering approach to embed demand flexibility into building energy benchmarking," Applied Energy, Elsevier, vol. 327(C).
    9. Liu, Xue & Ding, Yong & Tang, Hao & Fan, Lingxiao & Lv, Jie, 2022. "Investigating the effects of key drivers on energy consumption of nonresidential buildings: A data-driven approach integrating regularization and quantile regression," Energy, Elsevier, vol. 244(PA).
    10. Natascha Eggers & Torsten Birth & Bernd Sankol & Lukas Kerpen & Antonio Hurtado, 2023. "A Literature Review on Existing Methods and Indicators for Evaluating the Efficiency of Power-to-X Processes," Clean Technol., MDPI, vol. 5(1), pages 1-23, January.
    11. Jin, Xiaoyu & Xiao, Fu & Zhang, Chong & Chen, Zhijie, 2022. "Semi-supervised learning based framework for urban level building electricity consumption prediction," Applied Energy, Elsevier, vol. 328(C).
    12. Ma, Dingyuan & Li, Xiaodong & Lin, Borong & Zhu, Yimin, 2023. "An intelligent retrofit decision-making model for building program planning considering tacit knowledge and multiple objectives," Energy, Elsevier, vol. 263(PB).
    13. Khayatian, Fazel & Sarto, Luca & Dall'O', Giuliano, 2017. "Building energy retrofit index for policy making and decision support at regional and national scales," Applied Energy, Elsevier, vol. 206(C), pages 1062-1075.
    14. Park, Hyo Seon & Lee, Minhyun & Kang, Hyuna & Hong, Taehoon & Jeong, Jaewook, 2016. "Development of a new energy benchmark for improving the operational rating system of office buildings using various data-mining techniques," Applied Energy, Elsevier, vol. 173(C), pages 225-237.
    15. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    16. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
    17. Abou-Ziyan, Hosny Z. & Alajmi, Ali F., 2014. "Effect of load-sharing operation strategy on the aggregate performance of existed multiple-chiller systems," Applied Energy, Elsevier, vol. 135(C), pages 329-338.
    18. Lai, Yuan & Papadopoulos, Sokratis & Fuerst, Franz & Pivo, Gary & Sagi, Jacob & Kontokosta, Constantine E., 2022. "Building retrofit hurdle rates and risk aversion in energy efficiency investments," Applied Energy, Elsevier, vol. 306(PB).
    19. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    20. Rita, Rui & Marques, Vitor & Bárbara, Diogo & Chaves, Inês & Macedo, Pedro & Moutinho, Victor & Pereira, Mariana, 2023. "Crossing non-parametric and parametric techniques for measuring the efficiency: Evidence from 65 European electricity Distribution System Operators," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:3006-:d:1417312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.