IDEAS home Printed from https://ideas.repec.org/a/igg/jeoe00/v6y2017i1p49-65.html
   My bibliography  Save this article

Combined Heat and Power Dispatch using Hybrid Genetic Algorithm and Biogeography-based Optimization

Author

Listed:
  • Provas Kumar Roy

    (Department of Electrical Engineering, Jalpaiguri Government Engineering College, Jalpaiguri, India)

  • Madhumita Ghosh

    (Dr. B.C. Roy Engineering College, Durgapur, India)

Abstract

This paper explores the performance of biogeography-based optimization (BBO) algorithm for solving combined heat and power dispatch (CHPD) or cogeneration problem of power system. BBO is a type of evolutionary algorithm which is based on the theory of biogeography and is inspired by the two concepts, namely migration of species between “islands” via flotsam, wind, flying, swimming, etc. and mutation. To improve the convergence property and solution quality, blended crossover strategy of genetic algorithm (GA) is integrated with conventional BBO algorithm in this study. The effect of valve-point in cost function is considered by adding an absolute sinusoidal term with the conventional polynomial cost function. The potential of the proposed BBO and GA based BBO (GABBO) algorithms are assessed by means of an extensive comparative study of the solutions obtained for small and medium CHPD problems of power systems. To show the priority of the proposed algorithm, comparative studies are carried out to examine the effectiveness of the proposed BBO and GABBO approaches over evolutionary programming (EP), differential evolution (DE), particle swarm optimization (PSO) and time varying acceleration coefficients PSO (TVAC-PSO reported in the literature. The experimental results and comparison with other algorithms demonstrate that the proposed GABBO algorithm can be a proficient substitute lying on solving combined heat and power dispatch problems.

Suggested Citation

  • Provas Kumar Roy & Madhumita Ghosh, 2017. "Combined Heat and Power Dispatch using Hybrid Genetic Algorithm and Biogeography-based Optimization," International Journal of Energy Optimization and Engineering (IJEOE), IGI Global, vol. 6(1), pages 49-65, January.
  • Handle: RePEc:igg:jeoe00:v:6:y:2017:i:1:p:49-65
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJEOE.2017010103
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amiri, M. & Khanmohammadi, S. & Badamchizadeh, M.A., 2018. "Floating search space: A new idea for efficient solving the Economic and emission dispatch problem," Energy, Elsevier, vol. 158(C), pages 564-579.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jeoe00:v:6:y:2017:i:1:p:49-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.