IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v155y2018icp610-619.html
   My bibliography  Save this article

Well-being analysis of distribution network in the presence of electric vehicles

Author

Listed:
  • Kheradmand-Khanekehdani, Habiballah
  • Gitizadeh, Mohsen

Abstract

Environmental concerns, limitations of fossil fuels and their pollution are among the most important challenges of societies today. To overcome these challenges, the penetration rate of electric vehicles and renewable energy resources has highly increased. But the use of plug-in hybrid electric vehicles with unmanaged charging exerts a negative impact on the electric grid reliability. The current study presents a comprehensive investigation of the reliability of distribution grid based on stochastic behavior of plug-in hybrid electric vehicles and renewable energy resources. Moreover, a new method is introduced for grid well-being management in the presence of plug-in hybrid electric vehicles. The proposed method includes the managed charging and vehicle to grid scenarios and is tested through improved of Roy Billinton test system bus 2. The presented method manages the plug-in hybrid electric vehicles charging and power injection to the grid using system well-being analysis. The simulation results indicate that adequacy of distribution grid is put at risk state in the presence of plug-in hybrid electric vehicles with unmanaged charging, whereas the use of the proposed method not only does not deteriorate the system reliability but also improves well-being criteria and adequacy indices.

Suggested Citation

  • Kheradmand-Khanekehdani, Habiballah & Gitizadeh, Mohsen, 2018. "Well-being analysis of distribution network in the presence of electric vehicles," Energy, Elsevier, vol. 155(C), pages 610-619.
  • Handle: RePEc:eee:energy:v:155:y:2018:i:c:p:610-619
    DOI: 10.1016/j.energy.2018.04.164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218307874
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.04.164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    2. Kavousi-Fard, Abdollah & Khodaei, Amin, 2016. "Efficient integration of plug-in electric vehicles via reconfigurable microgrids," Energy, Elsevier, vol. 111(C), pages 653-663.
    3. Kavousi-Fard, Abdollah & Abbasi, Alireza & Rostami, Mohammad-Amin & Khosravi, Abbas, 2015. "Optimal distribution feeder reconfiguration for increasing the penetration of plug-in electric vehicles and minimizing network costs," Energy, Elsevier, vol. 93(P2), pages 1693-1703.
    4. Hedegaard, Karsten & Ravn, Hans & Juul, Nina & Meibom, Peter, 2012. "Effects of electric vehicles on power systems in Northern Europe," Energy, Elsevier, vol. 48(1), pages 356-368.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lisbona, Pilar & Frate, Guido Francesco & Bailera, Manuel & Desideri, Umberto, 2018. "Power-to-Gas: Analysis of potential decarbonization of Spanish electrical system in long-term prospective," Energy, Elsevier, vol. 159(C), pages 656-668.
    2. Hariri, Ali-Mohammad & Hashemi-Dezaki, Hamed & A. Hejazi, Maryam, 2020. "A novel generalized analytical reliability assessment method of smart grids including renewable and non-renewable distributed generations and plug-in hybrid electric vehicles," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    3. Liu, Jin-peng & Zhang, Teng-xi & Zhu, Jiang & Ma, Tian-nan, 2018. "Allocation optimization of electric vehicle charging station (EVCS) considering with charging satisfaction and distributed renewables integration," Energy, Elsevier, vol. 164(C), pages 560-574.
    4. Ahmadian, Ali & Sedghi, Mahdi & Fgaier, Hedia & Mohammadi-ivatloo, Behnam & Golkar, Masoud Aliakbar & Elkamel, Ali, 2019. "PEVs data mining based on factor analysis method for energy storage and DG planning in active distribution network: Introducing S2S effect," Energy, Elsevier, vol. 175(C), pages 265-277.
    5. L. Alvarado-Barrios & A. Rodríguez del Nozal & A. Tapia & J. L. Martínez-Ramos & D. G. Reina, 2019. "An Evolutionary Computational Approach for the Problem of Unit Commitment and Economic Dispatch in Microgrids under Several Operation Modes," Energies, MDPI, vol. 12(11), pages 1-23, June.
    6. Ji, Shou-feng & Zhao, Dan & Luo, Rong-juan, 2019. "Evolutionary game analysis on local governments and manufacturers' behavioral strategies: Impact of phasing out subsidies for new energy vehicles," Energy, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos Muñoz, Edgar & Razeghi, Ghazal & Zhang, Li & Jabbari, Faryar, 2016. "Electric vehicle charging algorithms for coordination of the grid and distribution transformer levels," Energy, Elsevier, vol. 113(C), pages 930-942.
    2. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    3. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    4. Fathabadi, Hassan, 2015. "Utilization of electric vehicles and renewable energy sources used as distributed generators for improving characteristics of electric power distribution systems," Energy, Elsevier, vol. 90(P1), pages 1100-1110.
    5. Tarroja, Brian & Shaffer, Brendan & Samuelsen, Scott, 2015. "The importance of grid integration for achievable greenhouse gas emissions reductions from alternative vehicle technologies," Energy, Elsevier, vol. 87(C), pages 504-519.
    6. Colmenar-Santos, Antonio & Borge-Diez, David & Ortega-Cabezas, Pedro Miguel & Míguez-Camiña, J.V., 2014. "Macro economic impact, reduction of fee deficit and profitability of a sustainable transport model based on electric mobility. Case study: City of León (Spain)," Energy, Elsevier, vol. 65(C), pages 303-318.
    7. Lena Ahmadi & Ali Elkamel & Sabah A. Abdul-Wahab & Michael Pan & Eric Croiset & Peter L. Douglas & Evgueniy Entchev, 2015. "Multi-Period Optimization Model for Electricity Generation Planning Considering Plug-in Hybrid Electric Vehicle Penetration," Energies, MDPI, vol. 8(5), pages 1-25, May.
    8. Arslan, Okan & Karasan, Oya Ekin, 2013. "Cost and emission impacts of virtual power plant formation in plug-in hybrid electric vehicle penetrated networks," Energy, Elsevier, vol. 60(C), pages 116-124.
    9. Madzharov, D. & Delarue, E. & D'haeseleer, W., 2014. "Integrating electric vehicles as flexible load in unit commitment modeling," Energy, Elsevier, vol. 65(C), pages 285-294.
    10. Ramakrishnan, R. & Hiremath, Somashekhar S. & Singaperumal, M., 2014. "Design strategy for improving the energy efficiency in series hydraulic/electric synergy system," Energy, Elsevier, vol. 67(C), pages 422-434.
    11. Amirioun, Mohammad Hassan & Kazemi, Ahad, 2014. "A new model based on optimal scheduling of combined energy exchange modes for aggregation of electric vehicles in a residential complex," Energy, Elsevier, vol. 69(C), pages 186-198.
    12. Božič, Dušan & Pantoš, Miloš, 2015. "Impact of electric-drive vehicles on power system reliability," Energy, Elsevier, vol. 83(C), pages 511-520.
    13. Yiding, Li & Wenwei, Wang & Cheng, Lin & Xiaoguang, Yang & Fenghao, Zuo, 2021. "A safety performance estimation model of lithium-ion batteries for electric vehicles under dynamic compression," Energy, Elsevier, vol. 215(PA).
    14. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    15. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.
    16. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    17. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    18. Norouzi, Mohammadali & Aghaei, Jamshid & Niknam, Taher & Alipour, Mohammadali & Pirouzi, Sasan & Lehtonen, Matti, 2023. "Risk-averse and flexi-intelligent scheduling of microgrids based on hybrid Boltzmann machines and cascade neural network forecasting," Applied Energy, Elsevier, vol. 348(C).
    19. Hernández, J.C. & Ruiz-Rodriguez, F.J. & Jurado, F., 2017. "Modelling and assessment of the combined technical impact of electric vehicles and photovoltaic generation in radial distribution systems," Energy, Elsevier, vol. 141(C), pages 316-332.
    20. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Ekşioğlu, Sandra D. & Castillo-Villar, Krystel K., 2021. "Designing a reliable electric vehicle charging station expansion under uncertainty," International Journal of Production Economics, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:155:y:2018:i:c:p:610-619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.